Back to Search Start Over

Acoustic Radiation Force Impulse (ARFI)-Induced Peak Displacements Reflect Degree of Anisotropy in Transversely Isotropic Elastic Materials

Authors :
Caterina M. Gallippi
Murad Hossain
Christopher J. Moore
Source :
IEEE Trans Ultrason Ferroelectr Freq Control
Publication Year :
2017

Abstract

In transversely isotropic (TI) materials, mechanical properties (Young’s modulus, shear modulus, and Poisson’s ratio) are different along versus across the axis of symmetry (AoS). In this paper, the feasibility of interrogating such directional mechanical property differences using acoustic radiation force impulse (ARFI) imaging is investigated. We herein test the hypotheses that: 1) ARFI-induced peak displacements (PDs) vary with TI material orientations when an asymmetrical ARFI excitation point spread function (PSF) is used, but not when a symmetrical ARFI PSF is employed and 2) the ratio of PDs induced with the long axis of an asymmetrical ARFI PSF oriented along versus across the material’s AoS is related to the degree of anisotropy of the material. These hypotheses were tested in silico using finite-element method (FEM) models and Field II. ARFI excitations had F/1.5, 3, 4, or 5 focal configurations, with the F/1.5 and F/5 cases having the most asymmetrical and symmetrical PSFs at the focal depth, respectively. These excitations were implemented for ARFI imaging in 52 different simulated TI materials with varying degrees of anisotropy, and the ratio of ARFI-induced PDs was calculated. The change in the ratio of PDs with respect to the anisotropy of the materials was highest for the F/1.5, indicating that PD was most strongly impacted by the material orientation when the ARFI excitation was the most asymmetrical. On the contrary, the ratio of PDs did not depend on the anisotropy of the material for the F/5 ARFI excitation, suggesting that PD did not depend on material orientation when the ARFI excitation was symmetrical. Finally, the ratio of PDs achieved using asymmetrical ARFI PSF reflected the degree of anisotropy in TI materials. These results support that symmetrical ARFI focal configurations are desirable when the orientation of the ARFI excitation to the AoS is not specifically known and measurement standardization is important, such as for longitudinal or cross-sectional studies of anisotropic organs. However, asymmetrical focal configurations are useful for exploiting anisotropy, which may be diagnostically relevant. Feasibility for future experimental implementation is demonstrated by simulating ultrasonic displacement tracking and by varying the ARF duration.

Details

ISSN :
15258955
Volume :
64
Issue :
6
Database :
OpenAIRE
Journal :
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Accession number :
edsair.doi.dedup.....eedbfbb339a27d8f3f991072a2f95963