Back to Search Start Over

Computing with Large Populations Using Interactions

Authors :
Pierre Fraigniaud
Xavier Koegler
Olivier Bournez
Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX)
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA)
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Bournez, Olivier
Source :
Mathematical Foundations of Computer Science 2012, MFCS'2012, Mathematical Foundations of Computer Science 2012, MFCS'2012, Aug 2012, Slovakia. pp.234-246, Mathematical Foundations of Computer Science 2012 ISBN: 9783642325885, MFCS
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; We define a general model capturing the behavior of a population of anonymous agents that interact in pairs. This model captures some of the main features of opportunistic networks, in which nodes (such as the ones of a mobile ad hoc networks) meet sporadically. For its reminiscence to Population Protocol, we call our model \emph{Large-Population Protocol}, or LPP. We are interested in the design of LPPs enforcing, for every $\nu\in[0,1]$, a proportion $\nu$ of the agents to be in a specific subset of marked states, when the size of the population grows to infinity; In which case, we say that the protocol \emph{computes} $\nu$. We prove that, for every $\nu\in[0,1]$, $\nu$ is computable by a LPP if and only if $\nu$ is algebraic. Our positive result is constructive. That is, we show how to construct, for every algebraic number $\nu\in[0,1]$, a protocol which computes $\nu$.

Details

Language :
English
ISBN :
978-3-642-32588-5
ISBNs :
9783642325885
Database :
OpenAIRE
Journal :
Mathematical Foundations of Computer Science 2012, MFCS'2012, Mathematical Foundations of Computer Science 2012, MFCS'2012, Aug 2012, Slovakia. pp.234-246, Mathematical Foundations of Computer Science 2012 ISBN: 9783642325885, MFCS
Accession number :
edsair.doi.dedup.....eeb9708b20cd2f558dda983a9910bae2