Back to Search Start Over

Hydrothermal Conversion of Thorium Oxalate into ThO2 · nH2O Oxide

Authors :
Adel Mesbah
Philippe Martin
Jérôme Maynadié
Nicolas Dacheux
Morgan Zunino
Jérémie Manaud
Myrtille O.J.Y. Hunault
Nicolas Clavier
Interfaces de Matériaux en Evolution (LIME)
Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Systèmes HYbrides pour la Séparation (LHyS)
Synchrotron SOLEIL (SSOLEIL)
Centre National de la Recherche Scientifique (CNRS)
Institut des Sciences et technologies pour une Economie Circulaire des énergies bas carbone (ISEC)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Source :
Inorganic Chemistry, Inorganic Chemistry, In press, ⟨10.1021/acs.inorgchem.0c01633⟩, Inorganic Chemistry, American Chemical Society, In press, ⟨10.1021/acs.inorgchem.0c01633⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Hydrothermal conversion of thorium oxalate, Th(C2O4)2·nH2O, into thorium dioxide was explored through a multiparametric study, leading to some guidelines for the preparation of crystallized samples with the minimum amount of impurities. As the formation of the oxide appeared to be operated through the hydrolysis of Th4+ after decomposition of oxalate fractions, pH values typically above 1 must be considered to recover a solid phase. Also, because of the high stability of the thorium oxalate precursor, hydrothermal treatments of more than 5 h at a temperature above 220 °C were required. All the ThO2·nH2O samples prepared presented amounts of residual carbon and water in the range 0.2-0.3 wt % and n ≈ 0.5, respectively. A combined FTIR, PXRD, and EXAFS study showed that these impurities mainly consisted of carbonates trapped between elementary nanosized crystallites, rather than substituted directly in the lattice, which generated a tensile effect over the crystal lattice. The presence of carbonates at the surface of the elementary crystallites could also explain their tendency to self-assembly, leading to the formation of spherical aggregates. Hydrothermal conversion of oxalates could then find its place in different processes of the nuclear fuel cycle, where it will provide an interesting opportunity to set up dustless routes leading from ions in solution to dioxide powders in a limited number of steps.

Details

Language :
English
ISSN :
00201669 and 1520510X
Database :
OpenAIRE
Journal :
Inorganic Chemistry, Inorganic Chemistry, In press, ⟨10.1021/acs.inorgchem.0c01633⟩, Inorganic Chemistry, American Chemical Society, In press, ⟨10.1021/acs.inorgchem.0c01633⟩
Accession number :
edsair.doi.dedup.....ee67545a2f2908c95526dd83fe709838