Back to Search Start Over

Generation and Characterization of SULT4A1 Mutant Mouse Models

Authors :
Shaida A. Andrabi
Mohammed Iqbal Hossain
Patrick L. Garcia
Charles N. Falany
Source :
Drug Metabolism and Disposition. 46:41-45
Publication Year :
2017
Publisher :
American Society for Pharmacology & Experimental Therapeutics (ASPET), 2017.

Abstract

Sulfotransferase 4A1 (SULT4A1) belongs to the cytosolic sulfotransferase (SULT) superfamily of enzymes that catalyze sulfonation reactions with a variety of endogenous and exogenous substrates. Of the SULTs, SULT4A1 was shown to have the highest sequence homology between vertebrate species, yet no known function or enzymatic activity has been identified for this orphan SULT. To better understand SULT4A1 function in mammalian brain, two mutant SULT4A1 mouse strains were generated utilizing clustered regulatory interspaced short palindromic repeats (CRISPR)–content-addressable storage (Cas) 9 technology. The first strain possessed a 28-base pair (bp) deletion (Δ28) in exon 1 that resulted in a frameshift mutation with premature termination. The second strain possessed a 12-bp in-frame deletion (Δ12) immediately preceding an active site histidine111 common to the SULT family. Homozygous pups of both strains present with severe and progressive neurologic symptoms, including tremor, absence seizures, abnormal gait, ataxia, decreased weight gain compared with littermates, and death around postnatal days 21–25. SULT4A1 immunostaining was decreased in brains of heterozygous pups and not detectable in homozygous pups of both SULT4A1 mutants. SULT4A1 localization in subcellular fractions of mouse brain showed SULT4A1 associated with mitochondrial, cytosolic, and microsomal fractions, a novel localization pattern for SULTs. Finally, primary cortical neurons derived from embryonic (E15) CD-1 mice expressed high levels of SULT4A1 throughout the cell except in nuclei. Taken together, SULT4A1 appears to be an essential neuronal protein required for normal brain function, at least in mammals. Mouse models will be valuable in future studies to investigate the regulation and functions of SULT4A1 in the mammalian brain.

Details

ISSN :
1521009X and 00909556
Volume :
46
Database :
OpenAIRE
Journal :
Drug Metabolism and Disposition
Accession number :
edsair.doi.dedup.....ee6704ffba9db812e69539908801c338