Back to Search Start Over

Structure of the HRV-C 3C-Rupintrivir Complex Provides New Insights for Inhibitor Design

Authors :
Ling Zhu
Hai Hou
Shuai Yuan
Kaiyue Fan
Yao Sun
Zhonghao Chen
Source :
Virol Sin
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Human rhinoviruses (HRVs) are the predominant infectious agents for the common cold worldwide. The HRV-C species cause severe illnesses in children and are closely related to acute exacerbations of asthma. 3C protease, a highly conserved enzyme, cleaves the viral polyprotein during replication and assists the virus in escaping the host immune system. These key roles make 3C protease an important drug target. A few structures of 3Cs complexed with an irreversible inhibitor rupintrivir have been determined. These structures shed light on the determinants of drug specificity. Here we describe the structures of HRV-C15 3C in free and inhibitor-bound forms. The volume-decreased S1’ subsite and half-closed S2 subsite, which were thought to be unique features of enterovirus A 3C proteases, appear in the HRV-C 3C protease. Rupintrivir assumes an “intermediate” conformation in the complex, which might open up additional avenues for the design of potent antiviral inhibitors. Analysis of the features of the three-dimensional structures and the amino acid sequences of 3C proteases suggest new applications for existing drugs.

Details

ISSN :
1995820X and 16740769
Volume :
35
Database :
OpenAIRE
Journal :
Virologica Sinica
Accession number :
edsair.doi.dedup.....ee5ff42fc8ddfda02bbcedd19a718c05