Back to Search Start Over

Evaluation of layered perovskites YBa1−xSrxCo2O5+δ as cathodes for intermediate-temperature solid oxide fuel cells

Authors :
Zhan Shi
Jie Lian
Fuchang Meng
Jean-Claude Grenier
Jean-Marc Bassat
Jingping Wang
Hui Zhao
Tian Xia
Key Laboratory of Functional Inorganic Material Chemistry (KLFIMC)
Université de Heilongjiang
Key Laboratory of Superlight Materials and Surface Technology
Harbin Engineering University (HRBEU)
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB)
Source :
International Journal of Hydrogen Energy, International Journal of Hydrogen Energy, Elsevier, 2014, 39 (9), pp.4531-4543. ⟨10.1016/j.ijhydene.2014.01.008⟩
Publication Year :
2014
Publisher :
Elsevier, 2014.

Abstract

International audience; This study is focused on the structural characteristics, oxygen nonstoichiometry, electrical conductivity, electrochemical performance and oxygen reduction mechanism of YBa1−xSrxCo2O5+δ (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5). The high oxygen nonstoichiometry, δ = 0.18-0.43 at 700 °C, indicates the large oxygen vacancy concentrations in oxides. The electrical conductivity is improved due to the greater amount of electronic holes originated from the increased interstitial oxygen, and the conductivities of all samples are above 100 S cm−1 at 400-700 °C in air. The results demonstrate the promising performance of YBa1−xSrxCo2O5+δ cathodes at intermediate temperatures, as evidenced by low area-specific resistances (ASRs) e.g. 0.21-0.59 Ω cm2 at 700 °C. The lowest ASR, 0.44 Ω cm2, and the cathodic overpotential, −40 mV at a current density of −136 mA cm−2, are obtained in YBaCo2O5+δ cathode at 650 °C. The dependence of polarization resistance on oxygen partial pressure suggests that the charge transfer process is the rate-limiting step for oxygen reduction reaction in YBaCo2O5+δ cathode.

Details

Language :
English
ISSN :
03603199
Database :
OpenAIRE
Journal :
International Journal of Hydrogen Energy, International Journal of Hydrogen Energy, Elsevier, 2014, 39 (9), pp.4531-4543. ⟨10.1016/j.ijhydene.2014.01.008⟩
Accession number :
edsair.doi.dedup.....ee203b8245751e3b2859462e96388705
Full Text :
https://doi.org/10.1016/j.ijhydene.2014.01.008⟩