Back to Search Start Over

Crystal isomorphisms for irreducible highest weight $U_{v}{\hat{sl}}_{e})$-modules of higher level

Authors :
Jacon, Nicolas
Lecouvey, C��dric
Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB)
Université de Bourgogne (UB)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville (LMPA)
Université du Littoral Côte d'Opale (ULCO)
Source :
Algebras and Representation Theory, Algebras and Representation Theory, Springer Verlag, 2010, 13, pp.467-489
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

We study the crystal graphs of irreducible $U_{v}(\hat{sl}}_{e})$-modules of higher level l. Generalizing works of the first author, we obtain a simple description of the bijections between the classes of multipartitions which naturally label these graphs: the Uglov multipartitions. This is achieved by expliciting an embedding of the $U_{v}(\hat{sl}}_{e})$-crystals of level l into $U_{v}(\hat{sl}_{\infty})$-crystals associated to highest weight modules.<br />the revised version correct minor errors

Details

Language :
English
ISSN :
1386923X and 15729079
Database :
OpenAIRE
Journal :
Algebras and Representation Theory, Algebras and Representation Theory, Springer Verlag, 2010, 13, pp.467-489
Accession number :
edsair.doi.dedup.....ee12672b4584efbf86b88988b76f2136