Back to Search
Start Over
Cancer-associated fibroblast heterogeneity is associated with organ-specific metastasis in pancreatic ductal adenocarcinoma
- Source :
- Journal of Hematology & Oncology, Vol 14, Iss 1, Pp 1-6 (2021), Journal of Hematology & Oncology
- Publication Year :
- 2021
- Publisher :
- BMC, 2021.
-
Abstract
- Background Metastasis occurs in the majority of pancreatic ductal adenocarcinoma (PDAC) patients at diagnosis or following resection. Patients with liver metastasis and those with lung metastasis have significantly different prognosis. Here, we sought to understand how cancer-associated fibroblasts (CAFs) play roles in the development of organ-specific metastasis. Methods PDAC tumor cell lines established from the primary tumors with liver and lung metastasis potentials, respectively, in Kras/p53 mutation conditional knock-in (KPC) mice were co-cultured with matched CAFs or mouse mesenchymal stem cells. CAFs were isolated from metastases and subjected to DNA methylation and whole transcriptomic RNA sequencing analysis. Results The ability of mouse PDAC tumor cell lines in developing liver or lung-specific metastases was demonstrated in orthotopic models. Tumor cells associated with liver metastasis potential, but not those associated with lung metastasis potential, induced the methylation of metabolism genes including NQO1 and ALDH1a3 and subsequent downregulated mRNA expression of a broader group of metabolism genes in CAFs. DNA methylation and downregulation of metabolism genes in CAFs in liver metastasis, but not those in lung metastasis, appeared to be regulated by DNA methyltransferase. Tumor cells associated with liver metastasis potential, but not those associated with lung metastasis potential, induce inflammatory CAF (iCAF) signatures. CAFs from liver metastasis demonstrated a more homogenous iCAF phenotype, whereas CAFs from lung metastasis maintained the heterogeneity. Conclusions PDAC with organ-specific metastatic potentials has different capacities in inducing methylation of metabolism genes in CAFs, modulating CAF phenotypes, and resulting in different levels of heterogeneity of CAFs in different metastatic niches.
- Subjects :
- Cancer Research
Lung Neoplasms
Cancer-associated fibroblast
Organ-specific metastasis
Biology
medicine.disease_cause
DNA methyltransferase
Metastasis
Transcriptome
Mice
Cancer-Associated Fibroblasts
Pancreatic cancer
Cell Line, Tumor
medicine
Animals
Humans
Diseases of the blood and blood-forming organs
Molecular Biology
Letter to the Editor
RC254-282
DNA methylation
Mesenchymal stem cell
Liver Neoplasms
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
Hematology
Methylation
medicine.disease
Gene Expression Regulation, Neoplastic
Pancreatic Neoplasms
Oncology
Cancer research
KRAS
Heterogeneity
RC633-647.5
Carcinoma, Pancreatic Ductal
Subjects
Details
- Language :
- English
- ISSN :
- 17568722
- Volume :
- 14
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Journal of Hematology & Oncology
- Accession number :
- edsair.doi.dedup.....ee02fdc67691223cdc456d0d05bfa970