Back to Search Start Over

Intrinsic noise induces critical behavior in leaky Markovian networks leading to avalanching

Authors :
Garrett Jenkinson
John Goutsias
Source :
PLoS Computational Biology, PLoS Computational Biology, Vol 10, Iss 1, p e1003411 (2014)
Publication Year :
2013

Abstract

The role intrinsic statistical fluctuations play in creating avalanches – patterns of complex bursting activity with scale-free properties – is examined in leaky Markovian networks. Using this broad class of models, we develop a probabilistic approach that employs a potential energy landscape perspective coupled with a macroscopic description based on statistical thermodynamics. We identify six important thermodynamic quantities essential for characterizing system behavior as a function of network size: the internal potential energy, entropy, free potential energy, internal pressure, pressure, and bulk modulus. In agreement with classical phase transitions, these quantities evolve smoothly as a function of the network size until a critical value is reached. At that value, a discontinuity in pressure is observed that leads to a spike in the bulk modulus demarcating loss of thermodynamic robustness. We attribute this novel result to a reallocation of the ground states (global minima) of the system's stationary potential energy landscape caused by a noise-induced deformation of its topographic surface. Further analysis demonstrates that appreciable levels of intrinsic noise can cause avalanching, a complex mode of operation that dominates system dynamics at near-critical or subcritical network sizes. Illustrative examples are provided using an epidemiological model of bacterial infection, where avalanching has not been characterized before, and a previously studied model of computational neuroscience, where avalanching was erroneously attributed to specific neural architectures. The general methods developed here can be used to study the emergence of avalanching (and other complex phenomena) in many biological, physical and man-made interaction networks.<br />Author Summary Networks of noisy interacting components arise in diverse scientific disciplines. Here, we develop a mathematical framework to study the underlying causes of a bursting phenomenon in network activity known as avalanching. As prototypical examples, we study a model of disease spreading in a population of individuals and a model of brain activity in a neural network. Although avalanching is well-documented in neural networks, thought to be crucial for learning, information processing, and memory, it has not been studied before in disease spreading. We employ tools originally used to analyze thermodynamic systems to argue that randomness in the actions of individual network components plays a fundamental role in avalanche formation. We show that avalanching is a spontaneous behavior, brought about by a phenomenon reminiscent to a phase transition in statistical mechanics, caused by increasing randomness as the network size decreases. Our work demonstrates that a previously suggested balanced feed-forward network structure is not necessary for neuronal avalanching. Instead, we attribute avalanching to a reallocation of the global minima of the network's stationary potential energy landscape, caused by a noise-induced deformation of its topographic surface.

Details

ISSN :
15537358
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
PLoS computational biology
Accession number :
edsair.doi.dedup.....edfa412490fbba5d2716402ab56e5346