Back to Search Start Over

Antibacterial properties and regenerative potential of Sr2+ and Ce3+ doped fluorapatites; a potential solution for peri-implantitis

Authors :
Eleni Gounari
Animesh Jha
A.D. Anastasiou
Dimitrios N. Bikiaris
Maria Nerantzaki
Monty Duggal
Peter V. Giannoudis
University of Leeds
University of Manchester [Manchester]
PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX)
Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Aristotle University of Thessaloniki
Source :
Scientific Reports, Scientific Reports, Nature Publishing Group, 2019, 9, pp.14469. ⟨10.1038/s41598-019-50916-4⟩, Anastasiou, A D, Nerantzaki, M, Gounari, E, Duggal, M S, Giannoudis, P V, Jha, A & Bikiaris, D 2019, ' Antibacterial properties and regenerative potential of Sr 2+ and Ce 3+ doped fluorapatites; a potential solution for peri-implantitis ', Scientific Reports, vol. 9, no. 1, 14469 . https://doi.org/10.1038/s41598-019-50916-4, Scientific Reports, Vol 9, Iss 1, Pp 1-11 (2019)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Scaffolds and implants in orthopaedics and regenerative dentistry usually fail because of bacterial infections. A promising solution would be the development of biomaterials with both significant regenerative potential and enhanced antibacterial activity. Working towards this direction, fluorapatite was synthesised and doped with Sr2+ and Ce3+ ions in order to tailor its properties. After experiments with four common bacteria (i.e. E. Coli, S. Aureus, B. Subtilis, B. Cereus), it was found that the undoped and the Ce3+ doped fluorapatites present better antibacterial response than the Sr2+ doped material. The synthesised minerals were incorporated into chitosan scaffolds and tested with Dental Pulp Stem Cells (DPSCs) to check their regenerative potential. As was expected, the scaffolds containing Sr2+-doped fluorapatite, presented high osteoconductivity leading to the differentiation of the DPSCs into osteoblasts. Similar results were obtained for the Ce3+-doped material, since both the concentration of osteocalcin and the RUNX2 gene expression were considerably higher than that for the un-doped mineral. Overall, it was shown that doping with Ce3+ retains the good antibacterial profile of fluorapatite and enhances its regenerative potential, which makes it a promising option for dealing with conditions where healing of hard tissues is compromised by bacterial contamination.

Details

Language :
English
ISSN :
20452322
Database :
OpenAIRE
Journal :
Scientific Reports, Scientific Reports, Nature Publishing Group, 2019, 9, pp.14469. ⟨10.1038/s41598-019-50916-4⟩, Anastasiou, A D, Nerantzaki, M, Gounari, E, Duggal, M S, Giannoudis, P V, Jha, A & Bikiaris, D 2019, ' Antibacterial properties and regenerative potential of Sr 2+ and Ce 3+ doped fluorapatites; a potential solution for peri-implantitis ', Scientific Reports, vol. 9, no. 1, 14469 . https://doi.org/10.1038/s41598-019-50916-4, Scientific Reports, Vol 9, Iss 1, Pp 1-11 (2019)
Accession number :
edsair.doi.dedup.....ede5cc4abb41e38c2ed7a20b20ebe7c4