Back to Search Start Over

Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols

Authors :
M. L. Pöhlker
F. Ditas
J. Saturno
T. Klimach
I. Hrabě de Angelis
A. C. Araùjo
J. Brito
S. Carbone
Y. Cheng
X. Chi
R. Ditz
S. S. Gunthe
B. A. Holanda
K. Kandler
J. Kesselmeier
T. Könemann
O. O. Krüger
J. V. Lavrič
S. T. Martin
E. Mikhailov
D. Moran-Zuloaga
L. V. Rizzo
D. Rose
H. Su
R. Thalman
D. Walter
J. Wang
S. Wolff
H. M. J. Barbosa
P. Artaxo
M. O. Andreae
U. Pöschl
C. Pöhlker
Mira L. Pöhlker, Max Planck Institute for Chemistry
Reiner Ditz, Max Planck Institute for Chemistry
Sachin S. Gunthe, Indian Institute of Technology Madras
Bruna A. Holanda, Max Planck Institute for Chemistry
Konrad Kandler, Technische Universität Darmstadt
Ovid O. Krüger, Max Planck Institute for Chemistry
Jost V. Lavric, Max Planck Institute for Biogeochemistry
Scot T. Martin, Harvard University
Eugene Mikhailov, St. Petersburg State University
Daniel Moran-Zuloaga, Max Planck Institute for Chemistry
Luciana V. Rizzo, UNIFESP
Diana Rose, Goethe Universität / Hessian Agency for Nature Conservation, Environment and Geology
Hang Su, Max Planck Institute for Chemistry
Ryan Thalman, Brookhaven National Laboratory / Snow College
David Walter, Max Planck Institute for Chemistry
Jian Wang, Brookhaven National Laboratory
Stefan Wolff, Max Planck Institute for Chemistry
Henrique M. J. Barbosa, USP
Paulo Artaxo, colaborador CPATU
Meinrat O. Andreae, Max Planck Institute for Chemistry / University of California San Diego
Ulrich Pöschl, Max Planck Institute for Chemistry
Christopher Pöhlker, Max Planck Institute for Chemistry.
ALESSANDRO CARIOCA DE ARAUJO, CPATU
Florian Ditas, Max Planck Institute for Chemistry
Jorge Saturno, Max Planck Institute for Chemistry
Thomas Klimach, Max Planck Institute for Chemistry
Isabella Hrabe de Angelis, Max Planck Institute for Chemistry
Joel Brito, USP / Université Clermont Auvergne
Samara Carbone, USP / UNIVERSIDADE FEDERAL DE UBERLÂNDIA
Yafang Cheng, Max Planck Institute for Chemistry
Jürgen Kesselmeier, Max Planck Institute for Chemistry
Tobias Könemann, Max Planck Institute for Chemistry
Xuguang Chi, Max Planck Institute for Chemistry / Nanjing University
Biogeochemistry Department [Mainz]
Max Planck Institute for Chemistry (MPIC)
Max-Planck-Gesellschaft-Max-Planck-Gesellschaft
Embrapa Amazônia Oriental
Centre for Energy and Environment (CERI EE)
Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Laboratoire de Météorologie Physique (LaMP)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)
Universidade de São Paulo (USP)
Max-Planck-Gesellschaft
Nanjing University (NJU)
Centre for Energy and Environment (CERI EE - IMT Nord Europe)
Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe)
Universidade de São Paulo = University of São Paulo (USP)
Source :
Atmospheric Chemistry and Physics, Vol 18, Pp 10289-10331 (2018), Atmospheric Chemistry and Physics, Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA-Alice), Empresa Brasileira de Pesquisa Agropecuária (Embrapa), instacron:EMBRAPA, Atmospheric Chemistry and Physics, European Geosciences Union, 2018, 18 (14), pp.10289-10331. ⟨10.5194/acp-18-10289-2018⟩, Atmospheric Chemistry and Physics, 2018, 18 (14), pp.10289-10331. ⟨10.5194/acp-18-10289-2018⟩
Publication Year :
2018
Publisher :
Copernicus GmbH, 2018.

Abstract

Size-resolved measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted over a full seasonal cycle at the remote Amazon Tall Tower Observatory (ATTO, March 2014–February 2015). In a preceding companion paper, we presented annually and seasonally averaged data and parametrizations (Part 1; Pöhlker et al., 2016a). In the present study (Part 2), we analyze key features and implications of aerosol and CCN properties for the following characteristic atmospheric conditions:Empirically pristine rain forest (PR) conditions, where no influence of pollution was detectable, as observed during parts of the wet season from March to May. The PR episodes are characterized by a bimodal aerosol size distribution (strong Aitken mode with DAit  ≈  70 nm and NAit  ≈  160 cm−3, weak accumulation mode with Dacc  ≈  160 nm and Nacc ≈  90 cm−3), a chemical composition dominated by organic compounds, and relatively low particle hygroscopicity (κAit ≈  0.12, κacc ≈  0.18).Long-range-transport (LRT) events, which frequently bring Saharan dust, African biomass smoke, and sea spray aerosols into the Amazon Basin, mostly during February to April. The LRT episodes are characterized by a dominant accumulation mode (DAit  ≈  80 nm, NAit  ≈  120 cm−3 vs. Dacc  ≈  180 nm, Nacc  ≈  310 cm−3), an increased abundance of dust and salt, and relatively high hygroscopicity (κAit ≈  0.18, κacc  ≈  0.35). The coarse mode is also significantly enhanced during these events.Biomass burning (BB) conditions characteristic for the Amazonian dry season from August to November. The BB episodes show a very strong accumulation mode (DAit  ≈  70 nm, NAit  ≈  140 cm−3 vs. Dacc  ≈  170 nm, Nacc  ≈  3400 cm−3), very high organic mass fractions ( ∼  90 %), and correspondingly low hygroscopicity (κAit ≈  0.14, κacc  ≈  0.17).Mixed-pollution (MPOL) conditions with a superposition of African and Amazonian aerosol emissions during the dry season. During the MPOL episode presented here as a case study, we observed African aerosols with a broad monomodal distribution (D  ≈  130 nm, NCN, 10  ≈  1300 cm−3), with high sulfate mass fractions (∼  20 %) from volcanic sources and correspondingly high hygroscopicity (κ ≈  0.14, κ > 100 nm ≈  0.22), which were periodically mixed with fresh smoke from nearby fires (D  ≈  110 nm, NCN, 10  ≈  2800 cm−3) with an organic-dominated composition and sharply decreased hygroscopicity (κ ≈  0.10, κ > 150 nm ≈  0.20).Insights into the aerosol mixing state are provided by particle hygroscopicity (κ) distribution plots, which indicate largely internal mixing for the PR aerosols (narrow κ distribution) and more external mixing for the BB, LRT, and MPOL aerosols (broad κ distributions).The CCN spectra (CCN concentration plotted against water vapor supersaturation) obtained for the different case studies indicate distinctly different regimes of cloud formation and microphysics depending on aerosol properties and meteorological conditions. The measurement results suggest that CCN activation and droplet formation in convective clouds are mostly aerosol-limited under PR and LRT conditions and updraft-limited under BB and MPOL conditions. Normalized CCN efficiency spectra (CCN divided by aerosol number concentration plotted against water vapor supersaturation) and corresponding parameterizations (Gaussian error function fits) provide a basis for further analysis and model studies of aerosol–cloud interactions in the Amazon.

Details

ISSN :
16807324 and 16807316
Volume :
18
Database :
OpenAIRE
Journal :
Atmospheric Chemistry and Physics
Accession number :
edsair.doi.dedup.....edda95dbb6b12d0d6fa87b9b236454a7