Back to Search Start Over

Adapted learning for polarization-based car detection

Authors :
Samia Ainouz
Stéphane Canu
Rachel Blin
Fabrice Meriaudeau
Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS)
Université Le Havre Normandie (ULH)
Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)
Equipe Apprentissage (DocApp - LITIS)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH)
Imagerie et Vision Artificielle [Dijon] (ImViA)
Université de Bourgogne (UB)
Christophe Cudel
Stéphane Bazeille
Nicolas Verrier
ANR-17-CE22-0011,ICUB,Imagerie Non Conventionnelle pour une Mobilité sécurisée en Milieu Urbain(2017)
Source :
FOURTEENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 14th International Conference on Quality Control by Artificial Vision, 14th International Conference on Quality Control by Artificial Vision, May 2019, Mulhouse, France. pp.98, ⟨10.1117/12.2523388⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Object detection in road scenes is an unavoidable task to develop autonomous vehicles and driving assistance systems. Deep neural networks have shown great performances using conventional imaging in ideal cases but they fail to properly detect objects in case of unstable scenes such as high reflections, occluded objects or small objects. Next to that, Polarized imaging, characterizing the light wave, can describe an object not only by its shape or color but also by its reflection properties. That feature is a reliable indicator of the physical nature of the object even under poor illumination or strong reflections. In this paper, we show how polarimetric images, combined with deep neural networks, contribute to enhance object detection in road scenes. Experimental results illustrate the effectiveness of the proposed framework at the end of this paper.

Details

Language :
English
Database :
OpenAIRE
Journal :
FOURTEENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 14th International Conference on Quality Control by Artificial Vision, 14th International Conference on Quality Control by Artificial Vision, May 2019, Mulhouse, France. pp.98, ⟨10.1117/12.2523388⟩
Accession number :
edsair.doi.dedup.....ed9d251fa94a344078e83311c5aa352c
Full Text :
https://doi.org/10.1117/12.2523388⟩