Back to Search
Start Over
Accurate Quantum Chemical Prediction of Gas-Phase Anion Binding Affinities and Their Structure-Binding Relationships
- Source :
- The Journal of Physical Chemistry A. 125:9838-9851
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- This paper systematically examines the performance of contemporary wavefunction and density functional theory methods to identify robust and cost-efficient methods for predicting gas-phase anion binding energies. This includes the local coupled cluster LNO-CCSD(T) and DLPNO-CCSD(T), as well as double-hybrid DSD-PBEP86-D3(BJ) and various hybrid functionals M06-2X, B3LYP-D3(BJ), ωB97M-V, and ωB97X-V. The focus is on dual-hydrogen-bonding anion receptors that are commonly found in supramolecular chemistry and organocatalysis, namely, (thio)ureas, deltamides, (thio)squaramides, and croconamides as well as the yet-to-be-explored rhodizonamides. Of the methods examined, M06-2X emerged as the overall best performing method as the other functionals including DSD-PBEP86-D3(BJ) and the local coupled cluster DLPNO-CCSD(T) method displayed systematic errors that increase with the degree of carbonylation of the receptors. Hybrid ONIOM models that employed semiempirical methods (PM7, GFN1-xTB, and GFN2-xTB) and "threefold"-corrected small-basis set potentials (HF-3c, B97-3c, and PBEh-3c) were explored, and the best models resulted in 50- to 500-fold reduction in CPU time compared to W1-local. These calculations provide important insight into the structure-binding relationships where there is a direct correlation between Brønsted acidity and anion binding affinity, though the strength of the correlation also depends on other factors such as hydrogen-bonding geometry and the geometrical distortion that the receptor needs to undergo to bind the anion.
- Subjects :
- ONIOM
010304 chemical physics
Chemistry
Supramolecular chemistry
Thio
010402 general chemistry
01 natural sciences
Affinities
0104 chemical sciences
Hybrid functional
Coupled cluster
Computational chemistry
0103 physical sciences
Density functional theory
Physical and Theoretical Chemistry
Anion binding
Subjects
Details
- ISSN :
- 15205215 and 10895639
- Volume :
- 125
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry A
- Accession number :
- edsair.doi.dedup.....ed9408f9018fefe472b5ec7fd5e1b547