Back to Search Start Over

Interactive example-based terrain authoring with conditional generative adversarial networks

Authors :
Julie Digne
Eric Galin
Bedrich Benes
Benoît Martinez
Christian Wolf
Adrien Peytavie
Eric Guérin
Modélisation Géométrique, Géométrie Algorithmique, Fractales (GeoMod)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Extraction de Caractéristiques et Identification (imagine)
Department of Computer Science [Purdue]
Purdue University [West Lafayette]
Ubisoft
Fonds National pour la Societé Numérique - PAPAYA P110720-2659260
ANR HDWorlds
ANR-16-CE33-0001,HDWorlds,Modèles procéduraux paramétriques pour la représentation d'univers virtuels complexes(2016)
Wolf, Christian
Modèles procéduraux paramétriques pour la représentation d'univers virtuels complexes - - HDWorlds2016 - ANR-16-CE33-0001 - AAPG2016 - VALID
Source :
ACM Transactions on Graphics, ACM Transactions on Graphics, Association for Computing Machinery, 2017, 36 (6)
Publication Year :
2017
Publisher :
Association for Computing Machinery (ACM), 2017.

Abstract

International audience; Authoring virtual terrains presents a challenge and there is a strong need for authoring tools able to create realistic terrains with simple user-inputs and with high user control. We propose an example-based authoring pipeline that uses a set of terrain synthesizers dedicated to specific tasks. Each terrain synthesizer is a Conditional Generative Adversarial Network trained by using real-world terrains and their sketched counterparts. The training sets are built automatically with a view that the terrain synthesizers learn the generation from features that are easy to sketch. During the authoring process, the artist first creates a rough sketch of the main terrain features, such as rivers, valleys and ridges, and the algorithm automatically synthesizes a terrain corresponding to the sketch using the learned features of the training samples. Moreover, an erosion synthesizer can also generate terrain evolution by erosion at a very low computational cost. Our framework allows for an easy terrain authoring and provides a high level of realism for a minimum sketch cost. We show various examples of terrain synthesis created by experienced as well as inexperienced users who are able to design a vast variety of complex terrains in a very short time.

Details

ISSN :
15577368 and 07300301
Volume :
36
Database :
OpenAIRE
Journal :
ACM Transactions on Graphics
Accession number :
edsair.doi.dedup.....ed76015e236428f7b6d1f5eedf1e4596
Full Text :
https://doi.org/10.1145/3130800.3130804