Back to Search Start Over

Helically symmetric extended magnetohydrodynamics: Hamiltonian formulation and equilibrium variational principles

Authors :
G. N. Throumoulopoulos
Philip J. Morrison
D. A. Kaltsas
Source :
Journal of Plasma Physics
Publication Year :
2018

Abstract

Hamiltonian extended magnetohydrodynamics (XMHD) is restricted to respect helical symmetry by reducing the Poisson bracket for the three-dimensional dynamics to a helically symmetric one, as an extension of the previous study for translationally symmetric XMHD (Kaltsas et al., Phys. Plasmas, vol. 24, 2017, 092504). Four families of Casimir invariants are obtained directly from the symmetric Poisson bracket and they are used to construct Energy–Casimir variational principles for deriving generalized XMHD equilibrium equations with arbitrary macroscopic flows. The system is then cast into the form of Grad–Shafranov–Bernoulli equilibrium equations. The axisymmetric and the translationally symmetric formulations can be retrieved as geometric reductions of the helically symmetric one. As special cases, the derivation of the corresponding equilibrium equations for incompressible plasmas is discussed and the helically symmetric equilibrium equations for the Hall MHD system are obtained upon neglecting electron inertia. An example of an incompressible double-Beltrami equilibrium is presented in connection with a magnetic configuration having non-planar helical magnetic axis.

Details

ISSN :
00223778
Database :
OpenAIRE
Journal :
Journal of Plasma Physics
Accession number :
edsair.doi.dedup.....ed6935a09c964c6f7108f10e622176c6
Full Text :
https://doi.org/10.1017/s0022377818000338