Back to Search
Start Over
Eta and rho invariants on manifolds with edges
- Publication Year :
- 2016
-
Abstract
- We establish existence of the eta-invariant as well as of the Atiyah-Patodi-Singer and the Cheeger-Gromov rho-invariants for a class of Dirac operators on an incomplete edge space. Our analysis applies in particular to the signature, the Gauss-Bonnet and the spin Dirac operator. We derive an analogue of the Atiyah-Patodi-Singer index theorem for incomplete edge spaces and their non-compact infinite Galois coverings with edge singular boundary. Our arguments employ microlocal analysis of the heat kernel asymptotics on incomplete edge spaces and the classical argument of Atiyah-Patodi-Singer. As an application, we discuss stability results for the two rho-invariants we have defined.<br />65 pages, 2 figures
- Subjects :
- spin manifold
Mathematics - Differential Geometry
Pure mathematics
incomplete edge metrics
Microlocal analysis
Boundary (topology)
58J52
Dirac operator
01 natural sciences
Mathematics - Spectral Theory
symbols.namesake
Fredholm index
Mathematics::K-Theory and Homology
0103 physical sciences
FOS: Mathematics
0101 mathematics
signature operator
Spectral Theory (math.SP)
Heat kernel
Mathematics
Algebra and Number Theory
Mathematics::Operator Algebras
Dirac (video compression format)
010102 general mathematics
stratified space
Eta invariant
heat kernel asymptotic
Rho invariant
spin dirac operator
Differential Geometry (math.DG)
symbols
010307 mathematical physics
Geometry and Topology
Mathematics::Differential Geometry
Signature (topology)
Edge space
Atiyah–Singer index theorem
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....ed5f5ea21b2b3892097e56e1842b0046