Back to Search Start Over

Room temperature water splitting at the surface of magnetite

Authors :
Peter Jacobson
Michael Schmid
Gareth S. Parkinson
Zbyněk Novotný
Ulrike Diebold
Source :
Journal of the American Chemical Society. 133(32)
Publication Year :
2011

Abstract

An array of surface science measurements has revealed novel water adsorption behavior at the Fe(3)O(4)(001) surface. Following room temperature exposure to water, a low coverage of hydrogen atoms is observed, with no associated water hydroxyl group. Mild annealing of the hydrogenated surface leads to desorption of water via abstraction of surface oxygen atoms, leading to a reduction of the surface. These results point to an irreversible splitting of the water molecule. The observed phenomena are discussed in the context of recent DFT calculations (Mulakaluri, N.; Pentcheva, R.; Scheffler, M. J. Phys. Chem. C 2010, 114, 11148), which show that the Jahn-Teller distorted surface isolates adsorbed H in a geometry that could kinetically hinder recombinative desorption. In contrast, the adsorption geometry facilitates interaction between water hydroxyl species, which are concluded to leave the surface following a reactive desorption process, possibly via the creation of O(2).

Details

ISSN :
15205126
Volume :
133
Issue :
32
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....ed020c8e8012edf9e75724c1932d6e21