Back to Search
Start Over
Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding
- Source :
- Journal of Colloid and Interface Science. 606:1193-1204
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- Electroconductive polystyrene (PS) composites with ideal flame-retardant properties are considered as potential electromagnetic interference (EMI) shielding materials. In this work, PS/silicon wrapped ammonium polyphosphate/multi-wall carbon nanotubes (PS/SiAPP/MWCNT) composites with segregated structure were synthesized via the methods of balling mill and hot-pressing. The obtained results revealed that the SiAPP and MWCNT were successfully introduced onto PS spheres and showed uniform distribution on the PS surface. The thermogravimetric analysis showed that PS/SiAPP/MWCNT containing 7 wt% MWCNT exhibited excellent thermal stability. Furthermore, the results of cone calorimeter test indicated that the heat release rate and total heat release of the PS/SiAPP/MWCNT containing a loading of 7 wt% MWCNT were reduced by 60.5% and 33.9%, respectively. In addition, the EMI shielding performance could reach 11 dB. Above results implied that the synergistic effect between the MWCNT and SiAPP effectively enhanced the flame retardant performance of the PS by promoting the generation of dense and continuous char layer to protect the PS from burning. The multiple reflection and adsorption are responsible for improved EMI shielding effectiveness. Therefore, segregated PS/SiAPP/MWCNT hybrid is an up-and-coming candidate for satisfactory EMI shielding materials with exceptional fire retardancy for electronic devices.
- Subjects :
- Thermogravimetric analysis
Materials science
Carbon nanotube
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
law.invention
Biomaterials
chemistry.chemical_compound
Colloid and Surface Chemistry
chemistry
law
Cone calorimeter
Electromagnetic shielding
Thermal stability
Polystyrene
Composite material
Ammonium polyphosphate
Fire retardant
Subjects
Details
- ISSN :
- 00219797
- Volume :
- 606
- Database :
- OpenAIRE
- Journal :
- Journal of Colloid and Interface Science
- Accession number :
- edsair.doi.dedup.....ecb87923bfcd7a3a1a49152acc2d8a4a