Back to Search Start Over

On the classification of multidimensionally consistent 3D maps

Authors :
Matteo Petrera
Yuri B. Suris
Publication Year :
2015

Abstract

We classify multidimensionally consistent maps given by (formal or convergent) series of the following kind: $$ T_k x_{ij}=x_{ij} + \sum_{m=2}^\infty A_{ij ; \, k}^{(m)}(x_{ij},x_{ik},x_{jk}), $$ where $A_{ij;\, k}^{(m)}$ are homogeneous polynomials of degree $m$ of their respective arguments. The result of our classification is that the only non-trivial multidimensionally consistent map in this class is given by the well known symmetric discrete Darboux system $$ T_k x_{ij}=\frac{x_{ij}+x_{ik}x_{jk}}{\sqrt{1-x_{ik}^2}\sqrt{1-x_{jk}^2}}. $$<br />11 pages

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....ecaf4cf7cb3cd3c3bd62a8bca225d3cb