Back to Search
Start Over
On the classification of multidimensionally consistent 3D maps
- Publication Year :
- 2015
-
Abstract
- We classify multidimensionally consistent maps given by (formal or convergent) series of the following kind: $$ T_k x_{ij}=x_{ij} + \sum_{m=2}^\infty A_{ij ; \, k}^{(m)}(x_{ij},x_{ik},x_{jk}), $$ where $A_{ij;\, k}^{(m)}$ are homogeneous polynomials of degree $m$ of their respective arguments. The result of our classification is that the only non-trivial multidimensionally consistent map in this class is given by the well known symmetric discrete Darboux system $$ T_k x_{ij}=\frac{x_{ij}+x_{ik}x_{jk}}{\sqrt{1-x_{ik}^2}\sqrt{1-x_{jk}^2}}. $$<br />11 pages
- Subjects :
- Physics
Degree (graph theory)
Series (mathematics)
Nonlinear Sciences - Exactly Solvable and Integrable Systems
010102 general mathematics
FOS: Physical sciences
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
01 natural sciences
Combinatorics
Homogeneous
0103 physical sciences
010307 mathematical physics
Exactly Solvable and Integrable Systems (nlin.SI)
0101 mathematics
Mathematical Physics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....ecaf4cf7cb3cd3c3bd62a8bca225d3cb