Back to Search Start Over

Microstructure and Corrosion Behavior of Sn-Zn Alloys

Authors :
Žaneta Gerhátová
Paulína Babincová
Marián Drienovský
Matej Pašák
Ivona Černičková
Libor Ďuriška
Róbert Havlík
Marián Palcut
Source :
Materials; Volume 15; Issue 20; Pages: 7210
Publication Year :
2022

Abstract

In the present work, the microstructure, phase constitution, and corrosion behavior of binary Sn–xZn alloys (x = 5, 9 and 15 wt.%) were investigated. The alloys were prepared by induction melting of Sn and Zn lumps in argon. After melting, the alloys were solidified to form cast cylinders. The Sn–9Zn alloy had a eutectic microstructure. The Sn–5Zn and Sn–15Zn alloys were composed of dendritic (Sn) or (Zn) and eutectic. The corrosion behavior of the Sn–Zn alloys was studied in aqueous HCl (1 wt.%) and NaCl (3.5 wt.%) solutions at room temperature. Corrosion potentials and corrosion rates in HCl were significantly higher compared to NaCl. The corrosion of the binary Sn–Zn alloys was found to take place by a galvanic mechanism. The chemical composition of the corrosion products formed on the Sn–Zn alloys changed with the Zn weight fraction. Alloys with a higher concentration of Zn (Sn–9Zn, Sn–15Zn) formed corrosion products rich in Zn. The Zn-rich corrosion products were prone to spallation. The corrosion rate in the HCl solution decreased with decreasing weight fraction of Zn. The Sn–5Zn alloy had the lowest corrosion rate. The corrosion resistance in HCl could be considerably improved by reducing the proportion of zinc in Sn–Zn alloys.

Details

ISSN :
19961944
Volume :
15
Issue :
20
Database :
OpenAIRE
Journal :
Materials (Basel, Switzerland)
Accession number :
edsair.doi.dedup.....eca60f1017271a42b812fb39d8ea7f42