Back to Search Start Over

Study for Updated Gout Classification Criteria (SUGAR): identification of features to classify gout

Authors :
Yin Yi Chou
T.L.Th.A. Jansen
Matthijs Janssen
Ana Beatriz Vargas-Santos
Ole Slot
Nicola Dalbeth
William J. Taylor
Worawit Louthrenoo
Maxim Eliseev
Anne Kathrin Tausche
Janitzia Vázquez-Mellado
Till Uhlig
Fernando Perez-Ruiz
Lorenzo Cavagna
Jaap Fransen
Melanie Brown
Chingtsai Lin
Carlo Alberto Scirè
Lisa K. Stamp
H. Ralph Schumacher
Marco A. Cimmino
Jiunn-Horng Chen
Tuhina Neogi
Francisca Sivera
Hang-Korng Ea
Geraldine M. McCarthy
Martijn Gerritsen
Taylor, W
Fransen, J
Jansen, T
Dalbeth, N
Schumacher, H
Brown, M
Louthrenoo, W
Vazquez-Mellado, J
Eliseev, M
Mccarthy, G
Stamp, L
Perez-Ruiz, F
Sivera, F
H. -K., E
Gerritsen, M
Scire, C
Cavagna, L
Lin, C
Chou, Y
Tausche, A
Vargas-Santos, A
Janssen, M
Chen, J
Slot, O
Cimmino, M
Uhlig, T
Neogi, T
Source :
ARTHRITIS CARE & RESEARCH, r-FISABIO. Repositorio Institucional de Producción Científica, instname, r-FISABIO: Repositorio Institucional de Producción Científica, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)
Publication Year :
2015

Abstract

OBJECTIVE: To determine which clinical, laboratory, and imaging features most accurately distinguished gout from non-gout. METHODS: We performed a cross-sectional study of consecutive rheumatology clinic patients with =1 swollen joint or subcutaneous tophus. Gout was defined by synovial fluid or tophus aspirate microscopy by certified examiners in all patients. The sample was randomly divided into a model development (two-thirds) and test sample (one-third). Univariate and multivariate association between clinical features and monosodium urate-defined gout was determined using logistic regression modeling. Shrinkage of regression weights was performed to prevent overfitting of the final model. Latent class analysis was conducted to identify patterns of joint involvement. RESULTS: In total, 983 patients were included. Gout was present in 509 (52%). In the development sample (n = 653), the following features were selected for the final model: joint erythema (multivariate odds ratio [OR] 2.13), difficulty walking (multivariate OR 7.34), time to maximal pain 6 mg/dl (0.36 mmoles/liter; multivariate OR 3.35), ultrasound double contour sign (multivariate OR 7.23), and radiograph erosion or cyst (multivariate OR 2.49). The final model performed adequately in the test set, with no evidence of misfit, high discrimination, and predictive ability. MTP1 joint involvement was the most common joint pattern (39.4%) in gout cases. CONCLUSION: Ten key discriminating features have been identified for further evaluation for new gout classification criteria. Ultrasound findings and degree of uricemia add discriminating value, and will significantly contribute to more accurate classification criteria.

Details

Language :
English
ISSN :
2151464X
Database :
OpenAIRE
Journal :
ARTHRITIS CARE & RESEARCH, r-FISABIO. Repositorio Institucional de Producción Científica, instname, r-FISABIO: Repositorio Institucional de Producción Científica, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)
Accession number :
edsair.doi.dedup.....eca3ffc911c9ce880597e67852f1a699