Back to Search Start Over

Voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic development

Authors :
Shunsuke Ohura
Reina Aoki
Aoi Jitsuki-Takahashi
Yoshio Goshima
Haruyuki Kamiya
Naoya Yamashita
Sandy Chen
Source :
Brain Research. 1631:127-136
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Growing axons rely on local signaling at the growth cone for guidance cues. Semaphorin3A (Sema3A), a secreted repulsive axon guidance molecule, regulates synapse maturation and dendritic branching. We previously showed that local Sema3A signaling in the growth cones elicits retrograde retrograde signaling via PlexinA4 (PlexA4), one component of the Sema3A receptor, thereby regulating dendritic localization of AMPA receptor GluA2 and proper dendritic development. In present study, we found that nimodipine (voltage-gated L-type Ca(2+) channel blocker) and tetrodotoxin (TTX; voltage-gated Na(+) channel blocker) suppress Sema3A-induced dendritic localization of GluA2 and dendritic branch formation in cultured hippocampal neurons. The local application of nimodipine or TTX to distal axons suppresses retrograde transport of Venus-Sema3A that has been exogenously applied to the distal axons. Sema3A facilitates axonal transport of PlexA4, which is also suppressed in neurons treated with either TTX or nimodipine. These data suggest that voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic GluA2 localization and branch formation.

Details

ISSN :
00068993
Volume :
1631
Database :
OpenAIRE
Journal :
Brain Research
Accession number :
edsair.doi.dedup.....ec804b5ae576d6257413168b1f0a327e
Full Text :
https://doi.org/10.1016/j.brainres.2015.11.034