Back to Search
Start Over
How to Improve Cancer Patients ENrollment in Clinical Trials From rEal-Life Databases Using the Observational Medical Outcomes Partnership Oncology Extension: Results of the PENELOPE Initiative in Urologic Cancers
- Source :
- JCO Clinical Cancer Informatics, JCO Clinical Cancer Informatics, 2023, 7, ⟨10.1200/CCI.22.00179⟩
- Publication Year :
- 2023
- Publisher :
- American Society of Clinical Oncology (ASCO), 2023.
-
Abstract
- PURPOSE To compare the computability of Observational Medical Outcomes Partnership (OMOP)–based queries related to prescreening of patients using two versions of the OMOP common data model (CDM; v5.3 and v5.4) and to assess the performance of the Greater Paris University Hospital (APHP) prescreening tool. MATERIALS AND METHODS We identified the prescreening information items being relevant for prescreening of patients with cancer. We randomly selected 15 academic and industry-sponsored urology phase I-IV clinical trials (CTs) launched at APHP between 2016 and 2021. The computability of the related prescreening criteria (PC) was defined by their translation rate in OMOP-compliant queries and by their execution rate on the APHP clinical data warehouse (CDW) containing data of 205,977 patients with cancer. The overall performance of the prescreening tool was assessed by the rate of true- and false-positive cases of three randomly selected CTs. RESULTS We defined a list of 15 minimal information items being relevant for patients' prescreening. We identified 83 PC of the 534 eligibility criteria from the 15 CTs. We translated 33 and 62 PC in queries on the basis of OMOP CDM v5.3 and v5.4, respectively (translation rates of 40% and 75%, respectively). Of the 33 PC translated in the v5.3 of the OMOP CDM, 19 could be executed on the APHP CDW (execution rate of 58%). Of 83 PC, the computability rate on the APHP CDW reached 23%. On the basis of three CTs, we identified 17, 32, and 63 patients as being potentially eligible for inclusion in those CTs, resulting in positive predictive values of 53%, 41%, and 21%, respectively. CONCLUSION We showed that PC could be formalized according to the OMOP CDM and that the oncology extension increased their translation rate through better representation of cancer natural history.
- Subjects :
- [INFO]Computer Science [cs]
General Medicine
Subjects
Details
- ISSN :
- 24734276
- Database :
- OpenAIRE
- Journal :
- JCO Clinical Cancer Informatics
- Accession number :
- edsair.doi.dedup.....ec71e8d8193de6d2ea29d663665b5875