Back to Search
Start Over
A validated gene regulatory network and GWAS identifies early regulators of T cell–associated diseases
- Source :
- Science Translational Medicine. 7
- Publication Year :
- 2015
- Publisher :
- American Association for the Advancement of Science (AAAS), 2015.
-
Abstract
- Early regulators of disease may increase understanding of disease mechanisms and serve as markers for presymptomatic diagnosis and treatment. However, early regulators are difficult to identify because patients generally present after they are symptomatic. We hypothesized that early regulators of T cell-associated diseases could be found by identifying upstream transcription factors (TFs) in T cell differentiation and by prioritizing hub TFs that were enriched for disease-associated polymorphisms. A gene regulatory network (GRN) was constructed by time series profiling of the transcriptomes and methylomes of human CD4(+) T cells during in vitro differentiation into four helper T cell lineages, in combination with sequence-based TF binding predictions. The TFs GATA3, MAF, and MYB were identified as early regulators and validated by ChIP-seq (chromatin immunoprecipitation sequencing) and small interfering RNA knockdowns. Differential mRNA expression of the TFs and their targets in T cell-associated diseases supports their clinical relevance. To directly test if the TFs were altered early in disease, T cells from patients with two T cell-mediated diseases, multiple sclerosis and seasonal allergic rhinitis, were analyzed. Strikingly, the TFs were differentially expressed during asymptomatic stages of both diseases, whereas their targets showed altered expression during symptomatic stages. This analytical strategy to identify early regulators of disease by combining GRNs with genome-wide association studies may be generally applicable for functional and clinical studies of early disease development. Funding Agencies|Cancer fund, Swedish Medical Research Council [K2013-61X-22310-01-04, 2012-3168]; Academy of Finland Centre of Excellence in Molecular Systems Immunology and Physiology Research [250114]; Sigrid Juselius Foundation; Generalitat de Catalunya AGAUR [2014-SGR364]; Spanish Association Against Cancer; Spanish Ministry of Health ISCIII FIS [PI12/01528]; RTICC [RD12/0036/0008]
- Subjects :
- CD4-Positive T-Lymphocytes
GATA3 Transcription Factor/genetics
Multiple Sclerosis
T cell
Gene regulatory network
Genome-wide association study
GATA3 Transcription Factor
Computational biology
Biology
Bioinformatics
Polymorphism, Single Nucleotide
Rhinitis, Allergic, Seasonal/diagnosis/genetics/immunology
Transcriptome
Proto-Oncogene Proteins c-myb
Proto-Oncogene Proteins c-maf/genetics
medicine
Humans
Gene Regulatory Networks
ta318
Biologiska vetenskaper
Transcription factor
Gene
Multiple Sclerosis/diagnosis/genetics/immunology
Klinisk medicin
GATA3
Rhinitis, Allergic, Seasonal
General Medicine
Biological Sciences
Proto-Oncogene Proteins c-myb/genetics
purl.org/pe-repo/ocde/ford#3.02.00 [https]
medicine.anatomical_structure
Proto-Oncogene Proteins c-maf
Clinical Medicine
CD4-Positive T-Lymphocytes/immunology/metabolism
Genome-Wide Association Study
Subjects
Details
- ISSN :
- 19466242 and 19466234
- Volume :
- 7
- Database :
- OpenAIRE
- Journal :
- Science Translational Medicine
- Accession number :
- edsair.doi.dedup.....ec5eb927155d4646b060b6b130ef4a90
- Full Text :
- https://doi.org/10.1126/scitranslmed.aad2722