Back to Search Start Over

Impact of Climate Change on Durum Wheat Yield

Authors :
Andrea Luvisi
Carmine Negro
Francesca Nicolì
Eliana Nutricati
Luigi De Bellis
Alessio Aprile
Erika Sabella
Marzia Vergine
Sabella, E.
Aprile, A.
Negro, C.
Nicoli, F.
Nutricati, E.
Vergine, M.
Luvisi, A.
De Bellis, L.
Source :
Agronomy, Vol 10, Iss 793, p 793 (2020), Agronomy, Volume 10, Issue 6
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Climate change will inevitably affect agriculture. Simulations of the effects of climate change on the agronomic performance (plant height, biomass dry weight, number of spikes, grain weight, harvest index, and 1000-kernel weight) of nine durum wheat cultivars were performed to identify the genotypes that will have a greater yield potential over the next 50 years. Plants were grown in two Fitotron&reg<br />CGR crop growth chambers: &ldquo<br />room 2020&rdquo<br />designed to reproduce the current climatic conditions (control) and &ldquo<br />room 2070&rdquo<br />designed to simulate the expected climate for the year 2070 in the RCP8.5 scenario (800 ppm, elevated [CO2], and a temperature increase of 2.5 &deg<br />C). The plant life cycle was clearly shorter in &ldquo<br />due to the physiological strategy of the plant to escape the high summer temperatures through early ripening of the kernels. Again, in &ldquo<br />the modern cultivars Rusticano, San Carlo, and Simeto and the old cultivar Cappelli increased the grain yield. Surprisingly, Cappelli seemed to be particularly suitable for cultivation in an environment rich in atmospheric CO2 and under high temperature stress, since it produced a grain yield that was approximately three times higher than the other varieties.

Details

ISSN :
20734395
Volume :
10
Database :
OpenAIRE
Journal :
Agronomy
Accession number :
edsair.doi.dedup.....ec5daac6294616df4365a5efacd9fd73
Full Text :
https://doi.org/10.3390/agronomy10060793