Back to Search Start Over

Combining analytical models and LES data to determine the transfer function from swirled premixed flames

Authors :
Fabien Dupuy
Franck Nicoud
Marco Gatti
Thierry Schuller
Clément Mirat
Laurent Gicquel
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Ecole Supérieure d'Electricité - SUPELEC (FRANCE)
Université Paris-Saclay (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Centre Européen de Recherche et Formation Avancées en Calcul Scientifique - CERFACS (FRANCE)
SAFRAN (FRANCE)
Université de Montpellier (FRANCE)
Centre Européen de Recherche et Formation Avancées en Calcul Scientifique - CERFACS (Toulouse, France)
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
CERFACS
Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C)
CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Institut de mécanique des fluides de Toulouse (IMFT)
Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées
Source :
Combustion and Flame, Combustion and Flame, Elsevier, 2020, 217, pp.222-236. ⟨10.1016/j.combustflame.2020.03.026⟩
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

International audience; A methodology is developed where the acoustic response of a swirl stabilized flame is obtained from a reduced set of simulations. Building upon previous analytical flame transfer functions, a parametrization of the flame response is first proposed, based on six independent physical parameters: a Strouhal number, the mean flame angle with respect to the main flow direction, the vortical structures convection speed, a swirl intensity parameter, a time delay between acoustic and vortical perturbations, as well as a phase shift between bulk and local velocity signals. It is then shown how these parameters can be deduced from steady and unsteady simulations. The methodology is applied to a laboratory scale premixed swirl stabilized flame exhibiting features representative of real aero-engines. In this matter, cold and reactive flow Large Eddy Simulations are first validated by comparing results with reference data from experiments. The high fidelity simulations are seen to be able to capture the flame structure and velocity profiles at different locations while forced flame dynamics for the frequency range of interest also match the experimental data. From the same analytical transfer function model, three methodologies of increasing complexity are presented for the determination of the model parameters, depending on the available data or computational resources. A first estimation of the flame acoustic response is obtained by evaluating parameters from a single stationary flame simulation in conjunction with analytical estimations for the acoustic-convective time delay. Flame dynamics and swirl related parameters can then be determined from a series of robust treatments on pulsed simulations data to improve the model accuracy. It is shown that good qualitative agreement for the flame transfer function can be obtained from a single non-forced simulation while quantitative agreement over the frequency range of interest can be obtained using additional reactive or non-reactive pulsed simulations at one single forcing frequency corresponding to a local gain minimum. The method also naturally handles different perturbation levels.

Details

ISSN :
00102180
Volume :
217
Database :
OpenAIRE
Journal :
Combustion and Flame
Accession number :
edsair.doi.dedup.....ec5cca0c1a29f9a7b1fc2d7805ea9c92