Back to Search Start Over

Kernel representation of Kalman observer and associated H-matrix based discretization

Authors :
Matthieu Aussal
Philippe Moireau
Inversion of Differential Equations For Imaging and physiX (IDEFIX)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École polytechnique (X)-EDF (EDF)
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
ESAIM: Control, Optimisation and Calculus of Variations, ESAIM: Control, Optimisation and Calculus of Variations, 2022, 28, pp.78. ⟨10.1051/cocv/2022071⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

In deterministic estimation, applying a Kalman filter to a dynamical model based on partial differential equations is theoretically seducing but solving the associated Riccati equation leads to a so-called curse of dimensionality for its numerical implementation. In this work, we propose to entirely revisit the theory of Kalman filters for parabolic problems where additional regularity results proves that the Riccati equation solution belongs to the class of Hilbert-Schmidt operators. The regularity of the associated kernel then allows to proceed to the numerical analysis of the Kalman full space-time discretization in adapted norms, hence justifying the implementation of the related Kalman filter numerical algorithm with H-matrices typically developed for integral equations discretization.

Details

Language :
English
ISSN :
12928119 and 12623377
Database :
OpenAIRE
Journal :
ESAIM: Control, Optimisation and Calculus of Variations, ESAIM: Control, Optimisation and Calculus of Variations, 2022, 28, pp.78. ⟨10.1051/cocv/2022071⟩
Accession number :
edsair.doi.dedup.....ec570e1a2e6278a5da28f1d9d2362a33