Back to Search
Start Over
Structure and Conductivity of Epitaxial Thin Films of In-Doped BaZrO3-Based Proton Conductors
- Source :
- J. Phys. Chem. C
- Publication Year :
- 2016
-
Abstract
- Epitaxial thin films of the proton conducting perovskite BaZr0.53In0.47O3-dH0.47–2d grown by pulsed laser deposition were investigated in their hydrated and dehydrated conditions through a multitechnique approach with the aim to study the structure and proton concentration depth profile and their relationship to proton conductivity. The techniques used were X ray diffraction X ray and neutron reflectivity nuclear reaction analysis and Rutherford backscattering together with impedance spectroscopy. The obtained proton conductivity and activation energy are comparable to literature values for the bulk conductivity of similar materials thus showing that grain boundary conductivity is negligible due to the high crystallinity of the film. The results reveal an uneven proton concentration depth profile with the presence of a 3–4 nm thick proton rich layer with altered composition likely characterized by cationic deficiency. While this surface layer either retains or reobtains protons after desorption and cooling to room temperature the bulk of the film absorbs and desorbs protons in the expected manner. It is suggested that the protons in the near surface proton rich region are located in proton sites characterized by relatively strong O–H bonds due to weak hydrogen bond interactions to neighboring oxygen atoms and that the mobility of protons in these sites is generally lower than in proton sites associated with stronger hydrogen bonds. It follows that strongly hydrogen bonding configurations are important for high proton mobility.
- Subjects :
- Materials science
Proton
Nuclear Theory
Analytical chemistry
02 engineering and technology
Conductivity
010402 general chemistry
01 natural sciences
7. Clean energy
Pulsed laser deposition
Condensed Matter::Materials Science
Surface conductivity
BARIUM ZIRCONATE
Nuclear reaction analysis
Surface layer
Physical and Theoretical Chemistry
Nuclear Experiment
Perovskite (structure)
021001 nanoscience & nanotechnology
DOPANT CONCENTRATION
0104 chemical sciences
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Dielectric spectroscopy
General Energy
SHORT-RANGE STRUCTURE
Physics::Accelerator Physics
0210 nano-technology
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- J. Phys. Chem. C
- Accession number :
- edsair.doi.dedup.....ec468b04245dd41a214497c2cdd1a1e1