Back to Search Start Over

Optimizing sparse RFI prediction using deep learning

Authors :
Nithyanandan Thyagarajan
Adam Lanman
Kathryn Rosie
Angelo Syce
Gianni Bernardi
Deepthi Gorthi
Joshua S. Dillon
Peter Sims
Judd D. Bowman
Brian Glendenning
Carina Cheng
Samantha Pieterse
Craig Smith
Nicholas S. Kern
Eunice Matsetela
Joshua Kerrigan
Miguel F. Morales
Piyanat Kittiwisit
Mathakane Molewa
Zaki S. Ali
Paul Alexander
Tshegofalang Mosiane
Aaron Ewall-Wice
Daniel C. Jacobs
Jack Hickish
Haoxuan Zheng
David MacMahon
Telalo Lekalake
Matt Dexter
Cresshim Malgas
Nicolas Fagnoni
Jacob Burba
Yanga Balfour
Adam P. Beardsley
Bradley Greig
Abraham R. Neben
Steve R. Furlanetto
Matthys Maree
Julia Estrada
David DeBoer
Randall Fritz
James E. Aguirre
Nipanjana Patra
Peter K. G. Williams
Nima Razavi-Ghods
Ziyaad Halday
Richard F. Bradley
Matthew Kolopanis
Paul La Plante
Aaron R. Parsons
Lourence Malan
Adrian Liu
Zara Abdurashidova
Austin Julius
Eloy de Lera Acedo
Jon Ringuette
James Robnett
Jonathan C. Pober
Andrei Mesinger
Jasper Grobbelaar
Saul A. Kohn
Chris Carilli
Zachary E. Martinot
Bryna J. Hazelton
USA
Kerrigan, J.
la Plante, P.
Kohn, S.
Pober, J. C.
Aguirre, J.
Abdurashidova, Z.
Alexander, P.
Ali, Z. S.
Balfour, Y.
Beardsley, A. P.
Bernardi, G.
Bowman, J. D.
Bradley, R. F.
Burba, J.
Carilli, C. L.
Cheng, C.
Deboer, D. R.
Dexter, M.
de Lera Acedo, E.
Dillon, J. S.
Estrada, J.
Ewall-Wice, A.
Fagnoni, N.
Fritz, R.
Furlanetto, S. R.
Glendenning, B.
Greig, B.
Grobbelaar, J.
Gorthi, D.
Halday, Z.
Hazelton, B. J.
Hickish, J.
Jacobs, D. C.
Julius, A.
Kern, N. S.
Kittiwisit, P.
Kolopanis, M.
Lanman, A.
Lekalake, T.
Liu, A.
Macmahon, D.
Malan, L.
Malgas, C.
Maree, M.
Martinot, Z. E.
Matsetela, E.
Mesinger, A.
Molewa, M.
Morales, M. F.
Mosiane, T.
Neben, A. R.
Parsons, A. R.
Patra, N.
Pieterse, S.
Razavi-Ghods, N.
Ringuette, J.
Robnett, J.
Rosie, K.
Sims, P.
Smith, C.
Syce, A.
Thyagarajan, N.
Williams, P. K. G.
Zheng, H.
Source :
Monthly Notices of the Royal Astronomical Society, vol 488, iss 2
Publication Year :
2019
Publisher :
eScholarship, University of California, 2019.

Abstract

Radio Frequency Interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array grow larger in number of receivers. To address this, we present a Deep Fully Convolutional Neural Network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known "ground truth" dataset for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6$\times 10^{5}$ HERA time-ordered 1024 channeled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time-frequency context which increases discrimination between RFI and Non-RFI. The inclusion of phase when predicting achieves a Recall of 0.81, Precision of 0.58, and $F_{2}$ score of 0.75 as applied to our HERA-67 observations.<br />Comment: 11 pages, 7 figures

Details

Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society, vol 488, iss 2
Accession number :
edsair.doi.dedup.....ec30117ad2a2c6d07d8af5bb313491f7