Back to Search Start Over

On a conjecture on exponential Diophantine equations

Authors :
Maurice Mignotte
Mihai Cipu
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Institut de Recherche Mathématique Avancée (IRMA)
Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
The first author has been partially supported by the CEEX Program of the Romanian Ministry of Education, Research and Youth, Grant 2-CEx06-11-20/2006
The Simion Stoilow Institute of Mathematics of the Romanian Academy
P.O. Box 1-764
RO-014700 Bucharest
Romania
Université Louis Pasteur
U. F. R. de Math\' ematiques
Rue Ren\' e Descartes
67084 Strasbourg
France
Source :
Acta Arithmetica. 140:251-270
Publication Year :
2009
Publisher :
Institute of Mathematics, Polish Academy of Sciences, 2009.

Abstract

We study the solutions of a Diophantine equation of the form $a^x+b^y=c^z$, where $a\equiv 2 \pmod 4$, $b\equiv 3 \pmod 4$ and $\gcd (a,b,c)=1$. The main result is that if there exists a solution $(x,y,z)=(2,2,r)$ with $r>1$ odd then this is the only solution in integers greater than 1, with the possible exception of finitely many values $(c,r)$. We also prove the uniqueness of such a solution if any of $a$, $b$, $c$ is a prime power. In a different vein, we obtain various inequalities that must be satisfied by the components of a putative second solution.

Details

ISSN :
17306264 and 00651036
Volume :
140
Database :
OpenAIRE
Journal :
Acta Arithmetica
Accession number :
edsair.doi.dedup.....ebf0f418dbbaa409d01d48ab003e438f
Full Text :
https://doi.org/10.4064/aa140-3-3