Back to Search Start Over

Estimates of black carbon emissions in the western United States using the GEOS-Chem adjoint model

Authors :
Qinbin Li
Zhe Jiang
Monika Kopacz
Yuhao Mao
Kuo-Nan Liou
M. Gao
WeiMin Hao
Cenlin He
Ling Qi
Daven K. Henze
Dylan B. A. Jones
Source :
Atmospheric Chemistry and Physics, Vol 15, Iss 13, Pp 7685-7702 (2015)
Publication Year :
2015
Publisher :
Copernicus GmbH, 2015.

Abstract

We estimate black carbon (BC) emissions in the western United States for July–September 2006 by inverting surface BC concentrations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network using a global chemical transport model (GEOS-Chem) and its adjoint. Our best estimate of the BC emissions is 49.9 Gg at 2° × 2.5° (a factor of 2.1 increase) and 47.3 Gg at 0.5° × 0.667° (1.9 times increase). Model results now capture the observed major fire episodes with substantial bias reductions (~ 35 % at 2° × 2.5° and ~ 15 % at 0.5° × 0.667°). The emissions are ~ 20–50 % larger than those from our earlier analytical inversions (Mao et al., 2014). The discrepancy is especially drastic in the partitioning of anthropogenic versus biomass burning emissions. The August biomass burning BC emissions are 4.6–6.5 Gg and anthropogenic BC emissions 8.6–12.8 Gg, varying with the model resolution, error specifications, and subsets of observations used. On average both anthropogenic and biomass burning emissions in the adjoint inversions increase 2-fold relative to the respective {a priori} emissions, in distinct contrast to the halving of the anthropogenic and tripling of the biomass burning emissions in the analytical inversions. We attribute these discrepancies to the inability of the adjoint inversion system, with limited spatiotemporal coverage of the IMPROVE observations, to effectively distinguish collocated anthropogenic and biomass burning emissions on model grid scales. This calls for concurrent measurements of other tracers of biomass burning and fossil fuel combustion (e.g., carbon monoxide and carbon isotopes). We find that the adjoint inversion system as is has sufficient information content to constrain the total emissions of BC on the model grid scales.

Details

ISSN :
16807324
Volume :
15
Database :
OpenAIRE
Journal :
Atmospheric Chemistry and Physics
Accession number :
edsair.doi.dedup.....ebdf9af6644e7437e4ea32ed938dfb6b
Full Text :
https://doi.org/10.5194/acp-15-7685-2015