Back to Search
Start Over
Magnetic ground states of Ce3TiSb5, Pr3TiSb5and Nd3TiSb5 determined by neutron powder diffraction and magnetic measurements
- Publication Year :
- 2021
- Publisher :
- IOP Publishing Ltd, 2021.
-
Abstract
- The R 3TiSb5 ternary compounds, with R a light rare earth (La to Sm) have been reported to crystallize with the anti-Hf5CuSn3-type hexagonal structure (Pearson’s symbol hP18; space-group P63/mcm, N. 193). An early article that reported possible superconductivity in some of these intermetallic phases (namely those with R = La, Ce, and Nd) caught our attention. In this work, we have now refined the crystal structure of the R 3TiSb5 compounds with R = Ce, Pr and Nd by Rietveld methods using high-resolution neutron powder diffraction data. The magnetic ground states of these intermetallics have been investigated by low-temperature magnetization and high-intensity neutron diffraction. We find two different magnetic transitions corresponding to two related magnetic structures at T N1 = 4.8 K (k 1 = [0, 1/2, 1/8]) and T N2 = 3.4 K (k 2 = [0, 0, 1/8]), respectively for Ce3TiSb5. However, the magnetic ordering appears to occur following a peculiar hysteresis: the k 2-type magnetic structure develops only after the k 1-type phase fraction has first slowly ordered with time and the size of the ordered Ce3+ magnetic moment has become large enough to induce the second magnetic transition. At T = 1.5 K the maximum amplitude of the Ce moment in the coexisting phases amounts to μ Ce = 2.15 μ B. For Nd3TiSb5 an antiferromagnetic ordering below T N = 5.2 K into a relatively simpler commensurate magnetic structure with a magnetic moment of μ Nd = 2.14(3) μ B and magnetic propagation vector of k = [0, 0, 0], was determined. No evidence of superconductivity has been found in Nd3TiSb5. Finally, Pr3TiSb5 does not show any ordering down to 1.5 K in neutron diffraction while an antiferromagnetic ground state is detected in magnetization measurements. There is no sign of magnetic contribution from Ti atoms found in any of the studied compounds.
- Subjects :
- Superconductivity
neutron powder diffraction
Materials science
Magnetic moment
Condensed matter physics
Magnetic structure
magnetic structures
Neutron diffraction
Intermetallic
02 engineering and technology
021001 nanoscience & nanotechnology
Condensed Matter Physics
01 natural sciences
Ce-magnetism
phase separation
R3TiSb5
singlet state of Pr
Hysteresis
Magnetization
0103 physical sciences
Antiferromagnetism
General Materials Science
010306 general physics
0210 nano-technology
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....eba7474132152e31c3805c7993609007