Back to Search Start Over

Extracellular Signal-regulated Kinases (ERKs) Phosphorylate Lin28a Protein to Modulate P19 Cell Proliferation and Differentiation

Authors :
Long Li
Xiangyuan Liu
Min Chen
Daming Gao
Liyan Gong
Hu Zhou
Source :
Journal of Biological Chemistry. 292:3970-3976
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Lin28a, originally discovered in the nematode Caenorhabditis elegans and highly conserved across species, is a well characterized regulator of let-7 microRNA (miRNA) and is implicated in cell proliferation and pluripotency control. However, little is known about how Lin28a function is modulated at the post-translational level and thereby responds to major signaling pathways. Here we show that Lin28a is directly phosphorylated by ERK1/2 kinases at Ser-200. By editing lin28a gene with the CRISPR/Cas9-based method, we generated P19 mouse embryonic carcinoma stem cells expressing Lin28a-S200A (phospho-deficient) and Lin28a-S200D (phospho-mimetic) mutants, respectively, to study the functional impact of Ser-200 phosphorylation. Lin28a-S200D-expressing cells, but not Lin28a-S200A-expressing or control P19 embryonic carcinoma cells, displayed impaired inhibition of let-7 miRNA and resulted in decreased cyclin D1, whereas Lin28a-S200A knock-in cells expressed less let-7 miRNA, proliferated faster, and exhibited differentiation defect upon retinoic acid induction. Therefore our results support that ERK kinase-mediated Lin28a phosphorylation may be an important mechanism for pluripotent cells to facilitate the escape from the self-renewal cycle and start the differentiation process.

Details

ISSN :
00219258
Volume :
292
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....eb9ddc1457dd23c1aabc211bc0e02b3a
Full Text :
https://doi.org/10.1074/jbc.c117.775122