Back to Search Start Over

Microfluidic device integrating a network of hyper-elastic valves for automated glucose stimulation and insulin secretion collection from a single pancreatic islet

Authors :
Clément Quintard
Emily Tubbs
Jean-Luc Achard
Fabrice Navarro
Xavier Gidrol
Yves Fouillet
Biomicrotechnologie et génomique fonctionnelle (BIOMICS)
BioSanté (UMR BioSanté)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Source :
Biosensors and Bioelectronics, Biosensors and Bioelectronics, 2022, 202, pp.113967. ⟨10.1016/j.bios.2022.113967⟩
Publication Year :
2021

Abstract

Advances in microphysiological systems have prompted the need for robust and reliable cell culture devices. While microfluidic technology has made significant progress, devices often lack user-friendliness and are not designed to be industrialized on a large scale. Pancreatic islets are often being studied using microfluidic platforms in which the monitoring of fluxes is generally very limited, especially because the integration of valves to direct the flow is difficult to achieve. Considering these constraints, we present a thermoplastic manufactured microfluidic chip with an automated control of fluxes for the stimulation and secretion collection of pancreatic islet. The islet was directed toward precise locations through passive hydrodynamic trapping and both dynamic glucose stimulation and insulin harvesting were done automatically via a network of large deformation valves, directing the reagents and the pancreatic islet toward different pathways. This device we developed enables monitoring of insulin secretion from a single islet and can be adapted for the study of a wide variety of biological tissues and secretomes.

Details

ISSN :
18734235 and 09565663
Volume :
202
Database :
OpenAIRE
Journal :
Biosensorsbioelectronics
Accession number :
edsair.doi.dedup.....eb7c18ba4c414e0efb82b068d33102dd
Full Text :
https://doi.org/10.1016/j.bios.2022.113967⟩