Back to Search Start Over

Bringing existential variables in answer set programming and bringing non-monotony in existential rules: two sides of the same coin

Authors :
Swan Rocher
Claire Lefèvre
Jean-François Baget
Laurent Garcia
Fabien Garreau
Igor Stéphan
Graphs for Inferences on Knowledge (GRAPHIK)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire d'Etudes et de Recherche en Informatique d'Angers (LERIA)
Université d'Angers (UA)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Source :
Annals of Mathematics and Artificial Intelligence, Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2018, 82 (1-3), pp.3-41. ⟨10.1007/s10472-017-9563-9⟩, Annals of Mathematics and Artificial Intelligence, 2018, 82 (1-3), pp.3-41. ⟨10.1007/s10472-017-9563-9⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; This article deals with the combination of ontologies and rules by means of existential rules and answer set programming. Existential rules have been proposed for representing ontological knowledge, specifically in the context of Ontology- Based Data Access. Furthermore Answer Set Programming (ASP) is an appropriate formalism to represent various problems issued from Artificial Intelligence and arising when available information is incomplete. The combination of the two formalisms requires to extend existential rules with nonmonotonic negation and to extend ASP with existential variables. In this article, we present the syntax and semantics of Existential Non Monotonic Rules (ENM-rules) using skolemization which join together the two frameworks. We formalize its links with standard ASP. Moreover, since entailment with existential rules is undecidable, we present conditions that ensure the termination of a breadth-first forward chaining algorithm known as the chase and we discuss extension of these results in the nonmonotonic case.

Details

Language :
English
ISSN :
10122443 and 15737470
Database :
OpenAIRE
Journal :
Annals of Mathematics and Artificial Intelligence, Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2018, 82 (1-3), pp.3-41. ⟨10.1007/s10472-017-9563-9⟩, Annals of Mathematics and Artificial Intelligence, 2018, 82 (1-3), pp.3-41. ⟨10.1007/s10472-017-9563-9⟩
Accession number :
edsair.doi.dedup.....eb33c284f00d6aa4da5a9ac448ef8f6a
Full Text :
https://doi.org/10.1007/s10472-017-9563-9⟩