Back to Search Start Over

Mesoscopic higher regularity and subadditivity in elliptic homogenization

Authors :
Jean-Christophe Mourrat
Scott N. Armstrong
Tuomo Kuusi
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics [Aalto]
Aalto University
Unité de Mathématiques Pures et Appliquées (UMPA-ENSL)
École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)
Source :
Communications in Mathematical Physics, Communications in Mathematical Physics, 2016, 347, pp.315-361. ⟨10.1007/s00220-016-2663-2⟩, Communications in Mathematical Physics, Springer Verlag, 2016, 347, pp.315-361. ⟨10.1007/s00220-016-2663-2⟩
Publication Year :
2015

Abstract

We introduce a new method for obtaining quantitative results in stochastic homogenization for linear elliptic equations in divergence form. Unlike previous works on the topic, our method does not use concentration inequalities (such as Poincar\'e or logarithmic Sobolev inequalities in the probability space) and relies instead on a higher ($C^{k}$, $k \geq 1$) regularity theory for solutions of the heterogeneous equation, which is valid on length scales larger than a certain specified mesoscopic scale. This regularity theory, which is of independent interest, allows us to, in effect, localize the dependence of the solutions on the coefficients and thereby accelerate the rate of convergence of the expected energy of the cell problem by a bootstrap argument. The fluctuations of the energy are then tightly controlled using subadditivity. The convergence of the energy gives control of the scaling of the spatial averages of gradients and fluxes (that is, it quantifies the weak convergence of these quantities) which yields, by a new "multiscale" Poincar\'e inequality, quantitative estimates on the sublinearity of the corrector.<br />Comment: 44 pages, revised version, to appear in Comm. Math. Phys

Details

Language :
English
ISSN :
00103616 and 14320916
Database :
OpenAIRE
Journal :
Communications in Mathematical Physics, Communications in Mathematical Physics, 2016, 347, pp.315-361. ⟨10.1007/s00220-016-2663-2⟩, Communications in Mathematical Physics, Springer Verlag, 2016, 347, pp.315-361. ⟨10.1007/s00220-016-2663-2⟩
Accession number :
edsair.doi.dedup.....eb03124673f06babd7b171fb7e978349
Full Text :
https://doi.org/10.1007/s00220-016-2663-2⟩