Back to Search Start Over

Inducible podocyte-specific deletion of CTCF drives progressive kidney disease and bone abnormalities

Authors :
Eugene P. Rhee
Abbe R. Clark
Eric Hesse
Astrid Weins
Harald Jüppner
Mary L. Bouxsein
Anna Greka
Marta Christov
Niels Galjart
Hiroaki Saito
Peter Mundel
Braden Corbin
Ji Yong Jung
Samy Hakroush
Daniel J. Brooks
Cell biology
Source :
JCI Insight, Vol 3, Iss 4 (2018), JCI insight, 3(4):e95091. The American Society for Clinical Investigation
Publication Year :
2018
Publisher :
American Society for Clinical Investigation, 2018.

Abstract

Progressive chronic kidney diseases (CKDs) are on the rise worldwide. However, the sequence of events resulting in CKD progression remain poorly understood. Animal models of CKD exploring these issues are confounded by systemic toxicities or surgical interventions to acutely induce kidney injury. Here we report the generation of a CKD mouse model through the inducible podocyte-specific ablation of an essential endogenous molecule, the chromatin structure regulator CCCTC-binding factor (CTCF), which leads to rapid podocyte loss (iCTCFpod–/–). As a consequence, iCTCFpod–/– mice develop severe progressive albuminuria, hyperlipidemia, hypoalbuminemia, and impairment of renal function, and die within 8–10 weeks. CKD progression in iCTCFpod–/– mice leads to high serum phosphate and elevations in fibroblast growth factor 23 (FGF23) and parathyroid hormone that rapidly cause bone mineralization defects, increased bone resorption, and bone loss. Dissection of the timeline leading to glomerular pathology in this CKD model led to the surprising observation that podocyte ablation and the resulting glomerular filter destruction is sufficient to drive progressive CKD and osteodystrophy in the absence of interstitial fibrosis. This work introduces an animal model with significant advantages for the study of CKD progression, and it highlights the need for podocyte-protective strategies for future kidney therapeutics.

Details

ISSN :
23793708
Volume :
3
Database :
OpenAIRE
Journal :
JCI Insight
Accession number :
edsair.doi.dedup.....eb0015d1c5b22027985d15b62d280537
Full Text :
https://doi.org/10.1172/jci.insight.95091