Back to Search
Start Over
Framed sheaves on projective space and Quot schemes
- Source :
- Mathematische Zeitschrift. 300:745-760
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- We prove that, given integers $m\geq 3$, $r\geq 1$ and $n\geq 0$, the moduli space of torsion free sheaves on $\mathbb P^m$ with Chern character $(r,0,\ldots,0,-n)$ that are trivial along a hyperplane $D \subset \mathbb P^m$ is isomorphic to the Quot scheme $\mathrm{Quot}_{\mathbb A^m}(\mathscr O^{\oplus r},n)$ of $0$-dimensional length $n$ quotients of the free sheaf $\mathscr O^{\oplus r}$ on $\mathbb A^m$.<br />Minor improvements. Final version
- Subjects :
- General Mathematics
010102 general mathematics
01 natural sciences
Tangent-obstruction theories
Moduli space
Deformation theory
Combinatorics
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
Character (mathematics)
Quot scheme
Hyperplane
Scheme (mathematics)
0103 physical sciences
FOS: Mathematics
Torsion (algebra)
Projective space
Sheaf
010307 mathematical physics
0101 mathematics
Framed sheave
Algebraic Geometry (math.AG)
Moduli of sheave
Quotient
Mathematics
Subjects
Details
- ISSN :
- 14321823 and 00255874
- Volume :
- 300
- Database :
- OpenAIRE
- Journal :
- Mathematische Zeitschrift
- Accession number :
- edsair.doi.dedup.....eaebfe2b874521ff229ff4810fd1c6a3
- Full Text :
- https://doi.org/10.1007/s00209-021-02802-x