Back to Search
Start Over
Response times from ensembles of accumulators
- Source :
- Proceedings of the National Academy of Sciences. 111:2848-2853
- Publication Year :
- 2014
- Publisher :
- Proceedings of the National Academy of Sciences, 2014.
-
Abstract
- Decision-making is explained by psychologists through stochastic accumulator models and by neurophysiologists through the activity of neurons believed to instantiate these models. We investigated an overlooked scaling problem: How does a response time (RT) that can be explained by a single model accumulator arise from numerous, redundant accumulator neurons, each of which individually appears to explain the variability of RT? We explored this scaling problem by developing a unique ensemble model of RT, called e pluribus unum, which embodies the well-known dictum "out of many, one." We used the e pluribus unum model to analyze the RTs produced by ensembles of redundant, idiosyncratic stochastic accumulators under various termination mechanisms and accumulation rate correlations in computer simulations of ensembles of varying size. We found that predicted RT distributions are largely invariant to ensemble size if the accumulators share at least modestly correlated accumulation rates and RT is not governed by the most extreme accumulators. Under these regimes the termination times of individual accumulators was predictive of ensemble RT. We also found that the threshold measured on individual accumulators, corresponding to the firing rate of neurons measured at RT, can be invariant with RT but is equivalent to the specified model threshold only when the rate correlation is very high.
- Subjects :
- Neurons
Stochastic Processes
Multidisciplinary
Ensemble forecasting
Computer science
Pluribus
Stochastic process
business.industry
Models, Neurological
Monte Carlo method
Computational Biology
Neurophysiology
Response time
Models, Psychological
Biological Sciences
Correlation
Reaction Time
Humans
Computer Simulation
Statistical physics
Artificial intelligence
Invariant (mathematics)
business
Monte Carlo Method
Unum
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 111
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....eac94d24a3fb84dc641f4bc68d37bc70
- Full Text :
- https://doi.org/10.1073/pnas.1310577111