Back to Search Start Over

Lipschitz and H\'older stable determination of nonlinear terms for elliptic equations

Authors :
Yavar Kian
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
CPT - E8 Dynamique quantique et analyse spectrale
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nonlinearity, Nonlinearity, 2023, 36 (2), pp.1302-1322. ⟨10.1088/1361-6544/acafcd⟩
Publication Year :
2022

Abstract

We consider the inverse problem of determining some class of nonlinear terms appearing in an elliptic equation from boundary measurements. More precisely, we study the stability issue for this class of inverse problems. Under suitable assumptions, we prove a Lipschitz and a Hölder stability estimate associated with the determination of quasilinear and semilinear terms appearing in this class of elliptic equations from measurements restricted to an arbitrary part of the boundary of the domain. Besides their mathematical interest, our stability estimates can be useful for improving numerical reconstruction of this class of nonlinear terms. Our approach combines the linearization technique with applications of suitable class of singular solutions.

Details

Language :
English
ISSN :
09517715 and 13616544
Database :
OpenAIRE
Journal :
Nonlinearity, Nonlinearity, 2023, 36 (2), pp.1302-1322. ⟨10.1088/1361-6544/acafcd⟩
Accession number :
edsair.doi.dedup.....eac72f572b9fd2f4a252ef06df4dbcc6
Full Text :
https://doi.org/10.1088/1361-6544/acafcd⟩