Back to Search Start Over

Diffuse, non-polar electropermeabilization and reduced propidium uptake distinguish the effect of nanosecond electric pulses

Authors :
Iurii Semenov
Olga N. Pakhomova
Shu Xiao
Andrei G. Pakhomov
Christian W. Zemlin
Source :
Biochimica et Biophysica Acta (BBA) - Biomembranes. 1848:2118-2125
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

Ca2 + activation and membrane electroporation by 10-ns and 4-ms electric pulses (nsEP and msEP) were compared in rat embryonic cardiomyocytes. The lowest electric field which triggered Ca2 + transients was expectedly higher for nsEP (36 kV/cm) than for msEP (0.09 kV/cm) but the respective doses were similar (190 and 460 mJ/g). At higher intensities, both stimuli triggered prolonged firing in quiescent cells. An increase of basal Ca2 + level by > 10 nM in cells with blocked voltage-gated Ca2 + channels and depleted Ca2 + depot occurred at 63 kV/cm (nsEP) or 0.14 kV/cm (msEP) and was regarded as electroporation threshold. These electric field values were at 150–230% of stimulation thresholds for both msEP and nsEP, notwithstanding a 400,000-fold difference in pulse duration. For comparable levels of electroporative Ca2 + uptake, msEP caused at least 10-fold greater uptake of propidium than nsEP, suggesting increased yield of larger pores. Electroporation by msEP started Ca2 + entry abruptly and locally at the electrode-facing poles of cell, followed by a slow diffusion to the center. In a stark contrast, nsEP evoked a “supra-electroporation” pattern of slower but spatially uniform Ca2 + entry. Thus nsEP and msEP had comparable dose efficiency, but differed profoundly in the size and localization of electropores.

Details

ISSN :
00052736
Volume :
1848
Database :
OpenAIRE
Journal :
Biochimica et Biophysica Acta (BBA) - Biomembranes
Accession number :
edsair.doi.dedup.....eac6209b8513b828c5aabb4b62f55039