Back to Search
Start Over
Protection against iron- and hydrogen peroxide-dependent cell injuries by a novel synthetic iron catalase mimic and its precursor, the iron-free ligand
- Source :
- Free Radical Biology and Medicine. 37:1369-1383
- Publication Year :
- 2004
- Publisher :
- Elsevier BV, 2004.
-
Abstract
- Hydrogen peroxide is involved in many types of cell injury and exerts most of its injurious effects in conjunction with chelatable iron. We previously described a synthetic nonporphyrin iron-containing catalase mimic, TAA-1/Fe. Its ligand TAA-1 was designed for application in biological systems in which it is supposed to fulfill a dual task: it should chelate cellular labile iron and thus form the active catalase mimic, thereby decreasing levels of redox-active iron and enhancing the degradation of hydrogen peroxide. Here, we tested these novel compounds in cellular systems, i.e., in cultured hepatocytes and liver endothelial cells. Both the iron complex, i.e., the complete mimic, and the ligand, i.e., the putative precursor of this mimic, provided protection against endothelial cell injury induced by exogenous hydrogen peroxide. Furthermore, the ligand--but not (or less so) the complex--strongly protected both cell types against iron-dependent hypothermic injury and hepatocytes against iron-induced cell injury and against iron-dependent, histidine-induced injury. Together, these results demonstrate that the putative catalase mimic precursor TAA-1 is able to protect cells against iron- and/or hydrogen peroxide-dependent cell injuries and that--in line with our initial concept--it is likely to exert its protection by both iron chelation and hydrogen peroxide degradation.
- Subjects :
- Male
Hydrogen
Cell Survival
Iron
Cell
chemistry.chemical_element
Biochemistry
chemistry.chemical_compound
Hypothermia, Induced
Physiology (medical)
medicine
Animals
Chelation
Rats, Wistar
Hydrogen peroxide
Histidine
biology
Hydrogen Peroxide
Catalase
Ligand (biochemistry)
Rats
Endothelial stem cell
Kinetics
medicine.anatomical_structure
chemistry
Hepatocytes
biology.protein
Subjects
Details
- ISSN :
- 08915849
- Volume :
- 37
- Database :
- OpenAIRE
- Journal :
- Free Radical Biology and Medicine
- Accession number :
- edsair.doi.dedup.....eac3ef7297b1e19d786220978111e742