Back to Search Start Over

Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

Authors :
Sridhar Krishnan
Mohammadreza Balouchestani
Source :
Sensors, Vol 14, Iss 12, Pp 24305-24328 (2014), Sensors (Basel, Switzerland), Sensors, Volume 14, Issue 12, Pages 24305-24328
Publication Year :
2022
Publisher :
Ryerson University Library and Archives, 2022.

Abstract

Surface Electromyography (sEMG) is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1) they are not able to provide real-time monitoring<br />(2) they suffer from long processing time and low speed<br />(3) they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS) architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC). At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL) framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR). In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD) to 24%, Root Mean Squared Error (RMSE) to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR) for the reconstruction process.

Details

Database :
OpenAIRE
Journal :
Sensors, Vol 14, Iss 12, Pp 24305-24328 (2014), Sensors (Basel, Switzerland), Sensors, Volume 14, Issue 12, Pages 24305-24328
Accession number :
edsair.doi.dedup.....eabf015c3bf75ae7e83f187ed76f4692