Back to Search Start Over

Life cycle impact assessment methods for estimating the impacts of dissipative flows of metals

Authors :
Alexandre Charpentier Poncelet
Antoine Beylot
Jacques Villeneuve
Philippe Loubet
Christoph Helbig
Guido Sonnemann
Andrea Thorenz
Axel Tuma
Bertrand Laratte
Stéphanie Muller
Institut des Sciences Moléculaires (ISM)
Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Gemalto [Meudon]
GEMALTO (GEMALTO)
THALES
Veolia Environnement (FRANCE)
Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)
Cold Spring Harbor Laboratory (CSHL)
Modèles Insectes de l'Immunité Innée (M3I)
Institut de biologie moléculaire et cellulaire (IBMC)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
CH Rambouillet
Institut de Mécanique et d'Ingénierie (I2M)
Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)
Source :
Journal of Industrial Ecology, Journal of Industrial Ecology, Wiley, 2021, 25 (5), pp.1177-1193. ⟨10.1111/jiec.13136⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

The dissipation of metals leads to potential environmental impacts, usually evaluated for product systems with life cycle assessment. Dissipative flows of metals become inaccessible for future users, going against the common goal of a more circular economy. Therefore, they should be addressed in life cycle impact assessment (LCIA) in the area of protection “Natural Resources.” However, life cycle inventory databases provide limited information on dissipation as they only track emissions to the environment as elementary flows. Therefore, we propose two LCIA methods capturing the expected dissipation patterns of metals after extraction, based on dynamic material flow analysis data. The methods are applied to resource elementary flows in life cycle inventories. The lost potential service time method provides precautionary indications on the lost service due to dissipation over different time horizons. The average dissipation rate method distinguishes between the conservation potentials of different metals. Metals that are relatively well conserved, including major metals such as iron and aluminum, have low characterization factors (CFs). Those with poor process yields, including many companion and high-tech metals such as gallium and tellurium, have high CFs. A comparative study between the developed CFs, along with those of the Abiotic Depletion Potential and Environmental Dissipation Potential methods, show that dissipation trends do not consistently match those of the depletion and environmental dissipation potentials. The proposed methods may thus be complementary to other methods when assessing the impacts of resource use on the area of protection Natural Resources when pursuing an increased material circularity. The research of Alexandre Charpentier Poncelet, PhD candidate, is co-financed by the French Agency for ecological transition (ADEME) and the French geological survey (BRGM)

Details

Language :
English
ISSN :
10881980 and 15309290
Database :
OpenAIRE
Journal :
Journal of Industrial Ecology, Journal of Industrial Ecology, Wiley, 2021, 25 (5), pp.1177-1193. ⟨10.1111/jiec.13136⟩
Accession number :
edsair.doi.dedup.....eaa964e7ec1e4600e8b9a944dcd9ba42
Full Text :
https://doi.org/10.1111/jiec.13136⟩