Back to Search Start Over

N-Morpholino- and N-diethyl-analogues of palmitoylethanolamide increase the sensitivity of transfected human vanilloid receptors to activation by anandamide without affecting fatty acid amidohydrolase activity

Authors :
Christopher J. Fowler
Kent Olov Jonsson
Darren Smart
Didier M. Lambert
Séverine Vandevoorde
Source :
Bioorganic & Medicinal Chemistry. 11:817-825
Publication Year :
2003
Publisher :
Elsevier BV, 2003.

Abstract

The abilities of 19 analogues of palmitoylethanolamide and two analogues of oleoylethanolamide to affect the Ca(2+) influx into human embryonic kidney cells expressing the human vanilloid receptor (hVR1-HEK293 cells) in response to anandamide (AEA) have been investigated using a FLIPR assay and a bovine serum albumin-containing assay medium. Only palmitoylethanolamide produced any effect in the absence of AEA. The ability of palmitoylethanolamide to potentiate the response to AEA was retained when the N-CH(2)CH(2)OH group was replaced by N-CH(2)CH(2)Cl,whereas replacement with N-alkyl substituents [from -H up to -(CH(2))(12)CH(3)] resulted either in a reduction or in a complete loss of this activity. The tertiary amide N-(CH(2)CH(3))(2) (19) and N-morpholino (20) analogues of palmitoylethanolamide potentiated the response to 1 microM AEA to a greater degree than the parent compound, whereas the N-(CH(3))(2) analogue was inactive. 19 and 20 produced leftward shifts in the dose-response curve for AEA activation of Ca(2+) influx into hVR1-HEK293 cells. EC(50) values for AEA to produce Ca(2+) influx into hVR1-HEK293 cells were 1.1, 1.1, 0.54 and 0.36 microM in the presence of 0, 1, 3 and 10 microM 19, respectively. The corresponding values for 20 were 1.5, 1.3, 0.77 and 0.17 microM, respectively. The compounds did not affect the dose-response curves to capsaicin. The ability of oleoylethanolamide to potentiate AEA is retained by the N-CH(2)CH(3) and N-CH(CH(3))(2) analogues (22 and 23, respectively). 22 and 23 produced a small ( approximately 25%) inhibition of the binding of [(3)H]-CP55,940 and [(3)H]-WIN 55,212-2 to CB(1) and CB(2) receptors, respectively, expressed in CHO cells. The compounds inhibited the metabolism of 2 microM [(3)H]-AEA by rat brain fatty acid amidohydrolase with IC(50) values of 5.6 and 11 microM, respectively. In contrast, 19 and 20 were without effect on either binding to CB receptors or fatty acid amidohydrolase activity. Minor reductions in the accumulation of 10 microM [(3)H]-AEA into C6 glioma cells were seen at 10 microM concentrations of 19 and 20. It is concluded that 19 and 20 selectively enhance AEA effects upon VR1 receptors without potentially confounding effects upon CB receptors or fatty acid amidohydrolase activity.

Details

ISSN :
09680896
Volume :
11
Database :
OpenAIRE
Journal :
Bioorganic & Medicinal Chemistry
Accession number :
edsair.doi.dedup.....ea8e382c519f89e9fbb04713fe6ead16