Back to Search
Start Over
Source Function applied to experimental densities reveals subtle electron-delocalization effects and appraises their transferability properties in crystals
- Source :
- Acta crystallographica. Section B, Structural crystallography and crystal chemistry (Online) 72 (2016): 180–193. doi:10.1107/S2052520616003450, info:cnr-pdr/source/autori:Gatti C.; Saleh G.; Lo Presti L./titolo:Source Function applied to experimental densities reveals subtle electron-delocalization effects and appraises their transferability properties in crystals/doi:10.1107%2FS2052520616003450/rivista:Acta crystallographica. Section B, Structural crystallography and crystal chemistry (Online)/anno:2016/pagina_da:180/pagina_a:193/intervallo_pagine:180–193/volume:72
- Publication Year :
- 2016
- Publisher :
- Munksgaard, Copenhagen , Danimarca, 2016.
-
Abstract
- The Source Function (SF), introduced in 1998 by Richard Bader and Carlo Gatti, is succinctly reviewed and a number of paradigmatic applications to in vacuo and crystal systems are illustrated to exemplify how the SF may be used to discuss chemical bonding in both conventional and highly challenging cases. The SF enables the electron density to be seen at a point determined by source contributions from the atoms or a group of atoms of a system, and it is therefore well linked to the chemist's awareness that any local property and chemical behaviour is to some degree influenced by all the remaining parts of a system. The key and captivating feature of the SF is that its evaluation requires only knowledge of the electron density (ED) of a system, thereby enabling a comparison of ab initio and X-ray diffraction derived electron density properties on a common and rigorous basis. The capability of the SF to detect electron-delocalization effects and to quantify their degree of transferability is systematically explored in this paper through the analysis and comparison of experimentally X-ray derived Source Function patterns in benzene, naphthalene and (±)-8'-benzhydrylideneamino-1,1'-binaphthyl-2-ol (BAB) molecular crystals. It is shown that the SF tool recovers the characteristic SF percentage patterns caused by ?-electron conjugation in the first two paradigmatic aromatic molecules in almost perfect quantitative agreement with those obtained from ab initio periodic calculations. Moreover, the effect of chemical substitution on the degree of transferability of such patterns to the benzene- and naphthalene-like moieties of BAB is neatly shown and quantified by the observed systematic deviations, relative to benzene and naphthalene, of only those SF contributions from the substituted C atoms. Finally, the capability of the SF to reveal electron-delocalization effects is challenged by using a promolecule density, rather than the proper quantum mechanical density, to determine the changes in SF patterns along the cyclohexene, 1,3-cyclohexadiene and benzene molecule series. It is shown that, differently from the proper quantum density, the promolecular density is unable to reproduce the SF trends anticipated by the increase of electron delocalization along the series, therefore ruling out the geometrical effect as being the only cause for the observed SF patterns changes.The Source Function (SF), enabling the electron density to be viewed at a point as determined by source contributions from the various atoms or group of atoms of a system, is defined in terms of observables and it is amenable to experimental determination from accurate X-ray diffraction data. The use of the SF tool to discuss chemical bonding in molecules and crystals is reviewed, ahead of demonstrating that such a tool is also able to detect electron-delocalization effects and to assess their transferability properties in a series of paradigmatic molecular crystals, starting from knowledge of only the X-ray derived crystal electron densities.
- Subjects :
- Diffraction
Source function
Electron density
Experimental electron density
010405 organic chemistry
Chemistry
source function
Metals and Alloys
Ab initio
Crystal system
010402 general chemistry
01 natural sciences
Electron conjugation
Atomic and Molecular Physics, and Optics
0104 chemical sciences
Electronic, Optical and Magnetic Materials
X-ray diffraction
Transferability
Quantum Theory of Atoms in Molecules
Chemical bond
Computational chemistry
Chemical physics
Materials Chemistry
Molecule
Quantum
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Acta crystallographica. Section B, Structural crystallography and crystal chemistry (Online) 72 (2016): 180–193. doi:10.1107/S2052520616003450, info:cnr-pdr/source/autori:Gatti C.; Saleh G.; Lo Presti L./titolo:Source Function applied to experimental densities reveals subtle electron-delocalization effects and appraises their transferability properties in crystals/doi:10.1107%2FS2052520616003450/rivista:Acta crystallographica. Section B, Structural crystallography and crystal chemistry (Online)/anno:2016/pagina_da:180/pagina_a:193/intervallo_pagine:180–193/volume:72
- Accession number :
- edsair.doi.dedup.....ea7acbb2e5b415b46160d874bc15f42e
- Full Text :
- https://doi.org/10.1107/S2052520616003450