Back to Search Start Over

Nanoplastic Ingestion Enhances Toxicity of Persistent Organic Pollutants (POPs) in the Monogonont Rotifer Brachionus koreanus via Multixenobiotic Resistance (MXR) Disruption

Authors :
Chang-Bum Jeong
Jung Soo Seo
Hye-Min Kang
Young-Hwan Lee
Jin-Sol Lee
Jae-Seong Lee
Minghua Wang
Min-Sub Kim
Source :
Environmental Science & Technology. 52:11411-11418
Publication Year :
2018
Publisher :
American Chemical Society (ACS), 2018.

Abstract

Among the various materials found inside microplastic pollution, nanosized microplastics are of particular concern due to difficulties in quantification and detection; moreover, they are predicted to be abundant in aquatic environments with stronger toxicity than microsized microplastics. Here, we demonstrated a stronger accumulation of nanosized microbeads in the marine rotifer Brachionus koreanus compared to microsized ones, which was associated with oxidative stress-induced damages on lipid membranes. In addition, multixenobiotic resistance conferred by P-glycoproteins and multidrug resistance proteins, as a first line of membrane defense, was inhibited by nanoplastic pre-exposure, leading to enhanced toxicity of 2,2',4,4'-tetrabromodiphenyl ether and triclosan in B. koreanus. Our study provides a molecular mechanistic insight into the toxicity of nanosized microplastics toward aquatic invertebrates and further implies the significance of synergetic effects of microplastics with other environmental persistent organic pollutants.

Details

ISSN :
15205851 and 0013936X
Volume :
52
Database :
OpenAIRE
Journal :
Environmental Science & Technology
Accession number :
edsair.doi.dedup.....ea494c9ee8f89c3a0b94cd75c78d8c5e
Full Text :
https://doi.org/10.1021/acs.est.8b03211