Back to Search
Start Over
Dual Role of Epidermal Growth Factor Receptor in Liver Injury and Regeneration after Acetaminophen Overdose in Mice
- Source :
- Toxicological sciences : an official journal of the Society of Toxicology. 155(2)
- Publication Year :
- 2017
-
Abstract
- Epidermal growth factor receptor (EGFR) plays a crucial role in hepatocyte proliferation. Its role in acetaminophen (APAP)-mediated hepatotoxicity and subsequent liver regeneration is completely unknown. Role of EGFR after APAP-overdose in mice was studied using pharmacological inhibition strategy. Rapid, sustained and dose-dependent activation of EGFR was noted after APAP-treatment in mice, which was triggered by glutathione depletion. EGFR-activation was also observed in primary human hepatocytes after APAP-treatment, preceding elevation of toxicity markers. Treatment of mice with an EGFR-inhibitor (EGFRi), Canertinib, 1h post-APAP resulted in robust inhibition of EGFR-activation and a striking reduction in APAP-induced liver injury. Metabolic activation of APAP, formation of APAP-protein adducts, APAP-mediated JNK-activation and its mitochondrial translocation were not altered by EGFRi. Interestingly, EGFR rapidly translocated to mitochondria after APAP-treatment. EGFRi-treatment abolished mitochondrial EGFR activity, prevented APAP-mediated mitochondrial dysfunction/oxidative-stress and release of endonucleases from mitochondria, which are responsible for DNA-damage/necrosis. Treatment with N-acetylcysteine (NAC), 4h post-APAP in mice did not show any protection but treatment of EGFRi in combination with NAC showed decrease in liver injury. Finally, delayed treatment with EGFRi, 12-h post-APAP, did not alter peak injury but caused impairment of liver regeneration resulting in sustained injury and decreased survival after APAP overdose in mice. Impairment of regeneration was due to inhibition of cyclinD1 induction and cell cycle arrest. Our study has revealed a new dual role of EGFR both in initiation of APAP-injury and in stimulation of subsequent compensatory regeneration after APAP-overdose.
- Subjects :
- 0301 basic medicine
Mitochondria, Liver
Mitochondrion
Pharmacology
Toxicology
03 medical and health sciences
chemistry.chemical_compound
Mice
medicine
Animals
Epidermal growth factor receptor
Acetaminophen
Liver injury
biology
Canertinib
business.industry
digestive, oral, and skin physiology
EGF Receptor in Acetaminophen-Mediated Liver Toxicity
Analgesics, Non-Narcotic
Liver Failure, Acute
medicine.disease
Glutathione
Liver regeneration
Liver Regeneration
ErbB Receptors
Oxidative Stress
030104 developmental biology
medicine.anatomical_structure
chemistry
Hepatocyte
Anesthesia
Toxicity
biology.protein
Hepatocytes
Chemical and Drug Induced Liver Injury
Drug Overdose
business
medicine.drug
Protein Binding
Subjects
Details
- ISSN :
- 10960929
- Volume :
- 155
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Toxicological sciences : an official journal of the Society of Toxicology
- Accession number :
- edsair.doi.dedup.....ea359e78bceea7d466f25bb6c2906810