Back to Search
Start Over
Relative Cartier divisors and K-theory
- Publication Year :
- 2016
- Publisher :
- arXiv, 2016.
-
Abstract
- We study the relative Picard group $Pic(f)$ of a map $f:X\to S$ of schemes. If $f$ is faithful affine, it is the relative Cartier divisor group $I(f)$. The relative group $K_0(f)$ has a $\gamma$-filtration, and $Pic(f)$ is the top quotient for the $\gamma$-filtration. When $f$ is induced by a ring homomorphism $A\to B$, we show that the relative "nil" groups $NPic(f)$ and $NK_n(f)$ are continuous $W(A)$-modules.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....ea2202d1d88a6ad375bd0994f87837d2
- Full Text :
- https://doi.org/10.48550/arxiv.1604.05951