Back to Search Start Over

Flexible Stoichiometry and Asymmetry of the PIDDosome Core Complex by Heteronuclear NMR Spectroscopy and Mass Spectrometry

Authors :
Acely Garza-Garcia
Lily A. Nematollahi
Cherine Bechara
Nina Morgner
Diego Esposito
Paul C. Driscoll
Carol V. Robinson
Source :
Journal of Molecular Biology
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

Homotypic death domain (DD)–DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130–158 kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional 1H,15N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. 13C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core.<br />Graphical Abstract<br />Highlights • The PIDDosome core particle that has been crystallized as a 7:5 complex displays heterogeneous stoichiometry in solution. • Methyl-transverse relaxation optimized spectroscopy NMR spectra for the complex suggest that individual PIDD-DDs and RAIDD-DDs experience non-equivalent environments in the PIDDosome core. • A mutant PIDDosome core particle that is monodisperse displays similar NMR features, suggesting that the complexity of the spectra is a reflection of the absence of formal symmetry consistent with the crystal structure. • The NMR characteristics are reminiscent of those reported for the complex formed between the DDs of CD95 and FADD, suggesting that this latter complex has similar architecture to the PIDDosome core.

Details

ISSN :
00222836
Volume :
427
Database :
OpenAIRE
Journal :
Journal of Molecular Biology
Accession number :
edsair.doi.dedup.....ea0e6d97c4cef9505733f31c0766f7d0
Full Text :
https://doi.org/10.1016/j.jmb.2014.11.021